| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapoc.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapoc.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmapoc.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmapoc.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 5 |  | hdmapoc.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 6 |  | hdmapoc.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | hdmapoc.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmapoc.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | hdmapoc.x | ⊢ ( 𝜑  →  𝑋  ⊆  𝑉 ) | 
						
							| 10 | 1 2 3 6 | dochssv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ⊆  𝑉 )  →  ( 𝑂 ‘ 𝑋 )  ⊆  𝑉 ) | 
						
							| 11 | 8 9 10 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑋 )  ⊆  𝑉 ) | 
						
							| 12 | 11 | sseld | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 𝑂 ‘ 𝑋 )  →  𝑦  ∈  𝑉 ) ) | 
						
							| 13 | 12 | pm4.71rd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 𝑂 ‘ 𝑋 )  ↔  ( 𝑦  ∈  𝑉  ∧  𝑦  ∈  ( 𝑂 ‘ 𝑋 ) ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 15 |  | eqid | ⊢ ( LSpan ‘ 𝑈 )  =  ( LSpan ‘ 𝑈 ) | 
						
							| 16 | 1 2 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  𝑈  ∈  LMod ) | 
						
							| 18 | 1 2 3 14 6 | dochlss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ⊆  𝑉 )  →  ( 𝑂 ‘ 𝑋 )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 19 | 8 9 18 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑋 )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( 𝑂 ‘ 𝑋 )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  𝑦  ∈  𝑉 ) | 
						
							| 22 | 3 14 15 17 20 21 | ellspsn5b | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( 𝑦  ∈  ( 𝑂 ‘ 𝑋 )  ↔  ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } )  ⊆  ( 𝑂 ‘ 𝑋 ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 24 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 25 | 1 2 3 15 23 | dihlsprn | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑦  ∈  𝑉 )  →  ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 26 | 24 21 25 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 27 | 1 23 2 3 6 | dochcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ⊆  𝑉 )  →  ( 𝑂 ‘ 𝑋 )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 28 | 8 9 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑋 )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( 𝑂 ‘ 𝑋 )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 30 | 1 23 6 24 26 29 | dochord | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } )  ⊆  ( 𝑂 ‘ 𝑋 )  ↔  ( 𝑂 ‘ ( 𝑂 ‘ 𝑋 ) )  ⊆  ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ) ) ) | 
						
							| 31 | 21 | snssd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  { 𝑦 }  ⊆  𝑉 ) | 
						
							| 32 | 1 2 6 3 15 24 31 | dochocsp | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) )  =  ( 𝑂 ‘ { 𝑦 } ) ) | 
						
							| 33 | 32 | sseq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( ( 𝑂 ‘ ( 𝑂 ‘ 𝑋 ) )  ⊆  ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) )  ↔  ( 𝑂 ‘ ( 𝑂 ‘ 𝑋 ) )  ⊆  ( 𝑂 ‘ { 𝑦 } ) ) ) | 
						
							| 34 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  𝑋  ⊆  𝑉 ) | 
						
							| 35 | 1 23 2 3 6 | dochcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝑦 }  ⊆  𝑉 )  →  ( 𝑂 ‘ { 𝑦 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 36 | 24 31 35 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( 𝑂 ‘ { 𝑦 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 37 | 1 2 3 23 6 24 34 36 | dochsscl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( 𝑋  ⊆  ( 𝑂 ‘ { 𝑦 } )  ↔  ( 𝑂 ‘ ( 𝑂 ‘ 𝑋 ) )  ⊆  ( 𝑂 ‘ { 𝑦 } ) ) ) | 
						
							| 38 | 33 37 | bitr4d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( ( 𝑂 ‘ ( 𝑂 ‘ 𝑋 ) )  ⊆  ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) )  ↔  𝑋  ⊆  ( 𝑂 ‘ { 𝑦 } ) ) ) | 
						
							| 39 | 22 30 38 | 3bitrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( 𝑦  ∈  ( 𝑂 ‘ 𝑋 )  ↔  𝑋  ⊆  ( 𝑂 ‘ { 𝑦 } ) ) ) | 
						
							| 40 |  | dfss3 | ⊢ ( 𝑋  ⊆  ( 𝑂 ‘ { 𝑦 } )  ↔  ∀ 𝑧  ∈  𝑋 𝑧  ∈  ( 𝑂 ‘ { 𝑦 } ) ) | 
						
							| 41 | 39 40 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( 𝑦  ∈  ( 𝑂 ‘ 𝑋 )  ↔  ∀ 𝑧  ∈  𝑋 𝑧  ∈  ( 𝑂 ‘ { 𝑦 } ) ) ) | 
						
							| 42 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  ∧  𝑧  ∈  𝑋 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 43 | 34 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  ∧  𝑧  ∈  𝑋 )  →  𝑧  ∈  𝑉 ) | 
						
							| 44 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  ∧  𝑧  ∈  𝑋 )  →  𝑦  ∈  𝑉 ) | 
						
							| 45 | 1 6 2 3 4 5 7 42 43 44 | hdmapellkr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  ∧  𝑧  ∈  𝑋 )  →  ( ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 )  =   0   ↔  𝑦  ∈  ( 𝑂 ‘ { 𝑧 } ) ) ) | 
						
							| 46 | 1 6 2 3 42 44 43 | dochsncom | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  ∧  𝑧  ∈  𝑋 )  →  ( 𝑦  ∈  ( 𝑂 ‘ { 𝑧 } )  ↔  𝑧  ∈  ( 𝑂 ‘ { 𝑦 } ) ) ) | 
						
							| 47 | 45 46 | bitrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  ∧  𝑧  ∈  𝑋 )  →  ( ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 )  =   0   ↔  𝑧  ∈  ( 𝑂 ‘ { 𝑦 } ) ) ) | 
						
							| 48 | 47 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( ∀ 𝑧  ∈  𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 )  =   0   ↔  ∀ 𝑧  ∈  𝑋 𝑧  ∈  ( 𝑂 ‘ { 𝑦 } ) ) ) | 
						
							| 49 | 41 48 | bitr4d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( 𝑦  ∈  ( 𝑂 ‘ 𝑋 )  ↔  ∀ 𝑧  ∈  𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 )  =   0  ) ) | 
						
							| 50 | 49 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝑉  ∧  𝑦  ∈  ( 𝑂 ‘ 𝑋 ) )  ↔  ( 𝑦  ∈  𝑉  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 51 | 13 50 | bitrd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 𝑂 ‘ 𝑋 )  ↔  ( 𝑦  ∈  𝑉  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 52 | 51 | eqabdv | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑋 )  =  { 𝑦  ∣  ( 𝑦  ∈  𝑉  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 )  =   0  ) } ) | 
						
							| 53 |  | df-rab | ⊢ { 𝑦  ∈  𝑉  ∣  ∀ 𝑧  ∈  𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 )  =   0  }  =  { 𝑦  ∣  ( 𝑦  ∈  𝑉  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 )  =   0  ) } | 
						
							| 54 | 52 53 | eqtr4di | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑋 )  =  { 𝑦  ∈  𝑉  ∣  ∀ 𝑧  ∈  𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 )  =   0  } ) |