Metamath Proof Explorer


Theorem hdmapoc

Description: Express our constructed orthocomplement (polarity) in terms of the Hilbert space definition of orthocomplement. Lines 24 and 25 in Holland95 p. 14. (Contributed by NM, 17-Jun-2015)

Ref Expression
Hypotheses hdmapoc.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmapoc.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmapoc.v 𝑉 = ( Base ‘ 𝑈 )
hdmapoc.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmapoc.z 0 = ( 0g𝑅 )
hdmapoc.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
hdmapoc.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapoc.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmapoc.x ( 𝜑𝑋𝑉 )
Assertion hdmapoc ( 𝜑 → ( 𝑂𝑋 ) = { 𝑦𝑉 ∣ ∀ 𝑧𝑋 ( ( 𝑆𝑧 ) ‘ 𝑦 ) = 0 } )

Proof

Step Hyp Ref Expression
1 hdmapoc.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmapoc.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmapoc.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmapoc.r 𝑅 = ( Scalar ‘ 𝑈 )
5 hdmapoc.z 0 = ( 0g𝑅 )
6 hdmapoc.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
7 hdmapoc.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
8 hdmapoc.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 hdmapoc.x ( 𝜑𝑋𝑉 )
10 1 2 3 6 dochssv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑂𝑋 ) ⊆ 𝑉 )
11 8 9 10 syl2anc ( 𝜑 → ( 𝑂𝑋 ) ⊆ 𝑉 )
12 11 sseld ( 𝜑 → ( 𝑦 ∈ ( 𝑂𝑋 ) → 𝑦𝑉 ) )
13 12 pm4.71rd ( 𝜑 → ( 𝑦 ∈ ( 𝑂𝑋 ) ↔ ( 𝑦𝑉𝑦 ∈ ( 𝑂𝑋 ) ) ) )
14 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
15 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
16 1 2 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
17 16 adantr ( ( 𝜑𝑦𝑉 ) → 𝑈 ∈ LMod )
18 1 2 3 14 6 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑂𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) )
19 8 9 18 syl2anc ( 𝜑 → ( 𝑂𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) )
20 19 adantr ( ( 𝜑𝑦𝑉 ) → ( 𝑂𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) )
21 simpr ( ( 𝜑𝑦𝑉 ) → 𝑦𝑉 )
22 3 14 15 17 20 21 lspsnel5 ( ( 𝜑𝑦𝑉 ) → ( 𝑦 ∈ ( 𝑂𝑋 ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ⊆ ( 𝑂𝑋 ) ) )
23 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
24 8 adantr ( ( 𝜑𝑦𝑉 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
25 1 2 3 15 23 dihlsprn ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑦𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
26 24 21 25 syl2anc ( ( 𝜑𝑦𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
27 1 23 2 3 6 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑂𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
28 8 9 27 syl2anc ( 𝜑 → ( 𝑂𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
29 28 adantr ( ( 𝜑𝑦𝑉 ) → ( 𝑂𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
30 1 23 6 24 26 29 dochord ( ( 𝜑𝑦𝑉 ) → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ⊆ ( 𝑂𝑋 ) ↔ ( 𝑂 ‘ ( 𝑂𝑋 ) ) ⊆ ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ) ) )
31 21 snssd ( ( 𝜑𝑦𝑉 ) → { 𝑦 } ⊆ 𝑉 )
32 1 2 6 3 15 24 31 dochocsp ( ( 𝜑𝑦𝑉 ) → ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ) = ( 𝑂 ‘ { 𝑦 } ) )
33 32 sseq2d ( ( 𝜑𝑦𝑉 ) → ( ( 𝑂 ‘ ( 𝑂𝑋 ) ) ⊆ ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ) ↔ ( 𝑂 ‘ ( 𝑂𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑦 } ) ) )
34 9 adantr ( ( 𝜑𝑦𝑉 ) → 𝑋𝑉 )
35 1 23 2 3 6 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 𝑦 } ⊆ 𝑉 ) → ( 𝑂 ‘ { 𝑦 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
36 24 31 35 syl2anc ( ( 𝜑𝑦𝑉 ) → ( 𝑂 ‘ { 𝑦 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
37 1 2 3 23 6 24 34 36 dochsscl ( ( 𝜑𝑦𝑉 ) → ( 𝑋 ⊆ ( 𝑂 ‘ { 𝑦 } ) ↔ ( 𝑂 ‘ ( 𝑂𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑦 } ) ) )
38 33 37 bitr4d ( ( 𝜑𝑦𝑉 ) → ( ( 𝑂 ‘ ( 𝑂𝑋 ) ) ⊆ ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ) ↔ 𝑋 ⊆ ( 𝑂 ‘ { 𝑦 } ) ) )
39 22 30 38 3bitrd ( ( 𝜑𝑦𝑉 ) → ( 𝑦 ∈ ( 𝑂𝑋 ) ↔ 𝑋 ⊆ ( 𝑂 ‘ { 𝑦 } ) ) )
40 dfss3 ( 𝑋 ⊆ ( 𝑂 ‘ { 𝑦 } ) ↔ ∀ 𝑧𝑋 𝑧 ∈ ( 𝑂 ‘ { 𝑦 } ) )
41 39 40 bitrdi ( ( 𝜑𝑦𝑉 ) → ( 𝑦 ∈ ( 𝑂𝑋 ) ↔ ∀ 𝑧𝑋 𝑧 ∈ ( 𝑂 ‘ { 𝑦 } ) ) )
42 8 ad2antrr ( ( ( 𝜑𝑦𝑉 ) ∧ 𝑧𝑋 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
43 34 sselda ( ( ( 𝜑𝑦𝑉 ) ∧ 𝑧𝑋 ) → 𝑧𝑉 )
44 simplr ( ( ( 𝜑𝑦𝑉 ) ∧ 𝑧𝑋 ) → 𝑦𝑉 )
45 1 6 2 3 4 5 7 42 43 44 hdmapellkr ( ( ( 𝜑𝑦𝑉 ) ∧ 𝑧𝑋 ) → ( ( ( 𝑆𝑧 ) ‘ 𝑦 ) = 0𝑦 ∈ ( 𝑂 ‘ { 𝑧 } ) ) )
46 1 6 2 3 42 44 43 dochsncom ( ( ( 𝜑𝑦𝑉 ) ∧ 𝑧𝑋 ) → ( 𝑦 ∈ ( 𝑂 ‘ { 𝑧 } ) ↔ 𝑧 ∈ ( 𝑂 ‘ { 𝑦 } ) ) )
47 45 46 bitrd ( ( ( 𝜑𝑦𝑉 ) ∧ 𝑧𝑋 ) → ( ( ( 𝑆𝑧 ) ‘ 𝑦 ) = 0𝑧 ∈ ( 𝑂 ‘ { 𝑦 } ) ) )
48 47 ralbidva ( ( 𝜑𝑦𝑉 ) → ( ∀ 𝑧𝑋 ( ( 𝑆𝑧 ) ‘ 𝑦 ) = 0 ↔ ∀ 𝑧𝑋 𝑧 ∈ ( 𝑂 ‘ { 𝑦 } ) ) )
49 41 48 bitr4d ( ( 𝜑𝑦𝑉 ) → ( 𝑦 ∈ ( 𝑂𝑋 ) ↔ ∀ 𝑧𝑋 ( ( 𝑆𝑧 ) ‘ 𝑦 ) = 0 ) )
50 49 pm5.32da ( 𝜑 → ( ( 𝑦𝑉𝑦 ∈ ( 𝑂𝑋 ) ) ↔ ( 𝑦𝑉 ∧ ∀ 𝑧𝑋 ( ( 𝑆𝑧 ) ‘ 𝑦 ) = 0 ) ) )
51 13 50 bitrd ( 𝜑 → ( 𝑦 ∈ ( 𝑂𝑋 ) ↔ ( 𝑦𝑉 ∧ ∀ 𝑧𝑋 ( ( 𝑆𝑧 ) ‘ 𝑦 ) = 0 ) ) )
52 51 abbi2dv ( 𝜑 → ( 𝑂𝑋 ) = { 𝑦 ∣ ( 𝑦𝑉 ∧ ∀ 𝑧𝑋 ( ( 𝑆𝑧 ) ‘ 𝑦 ) = 0 ) } )
53 df-rab { 𝑦𝑉 ∣ ∀ 𝑧𝑋 ( ( 𝑆𝑧 ) ‘ 𝑦 ) = 0 } = { 𝑦 ∣ ( 𝑦𝑉 ∧ ∀ 𝑧𝑋 ( ( 𝑆𝑧 ) ‘ 𝑦 ) = 0 ) }
54 52 53 eqtr4di ( 𝜑 → ( 𝑂𝑋 ) = { 𝑦𝑉 ∣ ∀ 𝑧𝑋 ( ( 𝑆𝑧 ) ‘ 𝑦 ) = 0 } )