| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapip1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapip1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmapip1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmapip1.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hdmapip1.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 6 |  | hdmapip1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 7 |  | hdmapip1.i | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 8 |  | hdmapip1.n | ⊢ 𝑁  =  ( invr ‘ 𝑅 ) | 
						
							| 9 |  | hdmapip1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmapip1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 11 |  | hdmapip1.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 12 |  | hdmapip1.y | ⊢ 𝑌  =  ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) )  ·  𝑋 ) | 
						
							| 13 | 12 | fveq2i | ⊢ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 )  =  ( ( 𝑆 ‘ 𝑋 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) )  ·  𝑋 ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 15 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 16 | 11 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 17 | 1 2 10 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 18 | 6 | lvecdrng | ⊢ ( 𝑈  ∈  LVec  →  𝑅  ∈  DivRing ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝜑  →  𝑅  ∈  DivRing ) | 
						
							| 20 | 1 2 3 6 14 9 10 16 16 | hdmapipcl | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 21 |  | eldifsni | ⊢ ( 𝑋  ∈  ( 𝑉  ∖  {  0  } )  →  𝑋  ≠   0  ) | 
						
							| 22 | 11 21 | syl | ⊢ ( 𝜑  →  𝑋  ≠   0  ) | 
						
							| 23 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 24 | 1 2 3 5 6 23 9 10 16 | hdmapip0 | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  =  ( 0g ‘ 𝑅 )  ↔  𝑋  =   0  ) ) | 
						
							| 25 | 24 | necon3bid | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  ≠  ( 0g ‘ 𝑅 )  ↔  𝑋  ≠   0  ) ) | 
						
							| 26 | 22 25 | mpbird | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 27 | 14 23 8 | drnginvrcl | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑅 )  ∧  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  ≠  ( 0g ‘ 𝑅 ) )  →  ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 28 | 19 20 26 27 | syl3anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 29 | 1 2 3 4 6 14 15 9 10 16 16 28 | hdmaplnm1 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) )  ·  𝑋 ) )  =  ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) ) ( .r ‘ 𝑅 ) ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) ) ) | 
						
							| 30 | 14 23 15 7 8 | drnginvrl | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑅 )  ∧  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  ≠  ( 0g ‘ 𝑅 ) )  →  ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) ) ( .r ‘ 𝑅 ) ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) )  =   1  ) | 
						
							| 31 | 19 20 26 30 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) ) ( .r ‘ 𝑅 ) ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) )  =   1  ) | 
						
							| 32 | 29 31 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) )  ·  𝑋 ) )  =   1  ) | 
						
							| 33 | 13 32 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 )  =   1  ) |