Metamath Proof Explorer


Theorem hdmapip1

Description: Construct a proportional vector Y whose inner product with the original X equals one. (Contributed by NM, 13-Jun-2015)

Ref Expression
Hypotheses hdmapip1.h H = LHyp K
hdmapip1.u U = DVecH K W
hdmapip1.v V = Base U
hdmapip1.t · ˙ = U
hdmapip1.o 0 ˙ = 0 U
hdmapip1.r R = Scalar U
hdmapip1.i 1 ˙ = 1 R
hdmapip1.n N = inv r R
hdmapip1.s S = HDMap K W
hdmapip1.k φ K HL W H
hdmapip1.x φ X V 0 ˙
hdmapip1.y Y = N S X X · ˙ X
Assertion hdmapip1 φ S X Y = 1 ˙

Proof

Step Hyp Ref Expression
1 hdmapip1.h H = LHyp K
2 hdmapip1.u U = DVecH K W
3 hdmapip1.v V = Base U
4 hdmapip1.t · ˙ = U
5 hdmapip1.o 0 ˙ = 0 U
6 hdmapip1.r R = Scalar U
7 hdmapip1.i 1 ˙ = 1 R
8 hdmapip1.n N = inv r R
9 hdmapip1.s S = HDMap K W
10 hdmapip1.k φ K HL W H
11 hdmapip1.x φ X V 0 ˙
12 hdmapip1.y Y = N S X X · ˙ X
13 12 fveq2i S X Y = S X N S X X · ˙ X
14 eqid Base R = Base R
15 eqid R = R
16 11 eldifad φ X V
17 1 2 10 dvhlvec φ U LVec
18 6 lvecdrng U LVec R DivRing
19 17 18 syl φ R DivRing
20 1 2 3 6 14 9 10 16 16 hdmapipcl φ S X X Base R
21 eldifsni X V 0 ˙ X 0 ˙
22 11 21 syl φ X 0 ˙
23 eqid 0 R = 0 R
24 1 2 3 5 6 23 9 10 16 hdmapip0 φ S X X = 0 R X = 0 ˙
25 24 necon3bid φ S X X 0 R X 0 ˙
26 22 25 mpbird φ S X X 0 R
27 14 23 8 drnginvrcl R DivRing S X X Base R S X X 0 R N S X X Base R
28 19 20 26 27 syl3anc φ N S X X Base R
29 1 2 3 4 6 14 15 9 10 16 16 28 hdmaplnm1 φ S X N S X X · ˙ X = N S X X R S X X
30 14 23 15 7 8 drnginvrl R DivRing S X X Base R S X X 0 R N S X X R S X X = 1 ˙
31 19 20 26 30 syl3anc φ N S X X R S X X = 1 ˙
32 29 31 eqtrd φ S X N S X X · ˙ X = 1 ˙
33 13 32 syl5eq φ S X Y = 1 ˙