| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapinvlem3.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapinvlem3.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapinvlem3.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapinvlem3.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapinvlem3.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 6 |  | hdmapinvlem3.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 7 |  | hdmapinvlem3.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 8 |  | hdmapinvlem3.q | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 9 |  | hdmapinvlem3.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 10 |  | hdmapinvlem3.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 11 |  | hdmapinvlem3.t | ⊢  ×   =  ( .r ‘ 𝑅 ) | 
						
							| 12 |  | hdmapinvlem3.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 13 |  | hdmapinvlem3.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 14 |  | hdmapinvlem3.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | hdmapinvlem3.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 16 |  | hdmapinvlem3.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 17 |  | hdmapinvlem3.d | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 18 |  | hdmapinvlem3.i | ⊢ ( 𝜑  →  𝐼  ∈  𝐵 ) | 
						
							| 19 |  | hdmapinvlem3.j | ⊢ ( 𝜑  →  𝐽  ∈  𝐵 ) | 
						
							| 20 |  | hdmapinvlem3.ij | ⊢ ( 𝜑  →  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) )  =  ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) | 
						
							| 21 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 22 |  | eqid | ⊢ ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 23 | 1 4 15 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 25 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 26 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 27 | 1 24 25 4 5 26 2 15 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 28 | 27 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  𝑉 ) | 
						
							| 29 | 5 9 8 10 | lmodvscl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐽  ∈  𝐵  ∧  𝐸  ∈  𝑉 )  →  ( 𝐽  ·  𝐸 )  ∈  𝑉 ) | 
						
							| 30 | 23 19 28 29 | syl3anc | ⊢ ( 𝜑  →  ( 𝐽  ·  𝐸 )  ∈  𝑉 ) | 
						
							| 31 | 28 | snssd | ⊢ ( 𝜑  →  { 𝐸 }  ⊆  𝑉 ) | 
						
							| 32 | 1 4 5 3 | dochssv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝐸 }  ⊆  𝑉 )  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 33 | 15 31 32 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 34 | 33 17 | sseldd | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 35 | 1 4 5 7 21 22 13 15 30 34 | hdmapsub | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( ( 𝐽  ·  𝐸 )  −  𝐷 ) )  =  ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝐷 ) ) ) | 
						
							| 36 | 35 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( ( 𝐽  ·  𝐸 )  −  𝐷 ) ) ‘ ( ( 𝐼  ·  𝐸 )  +  𝐶 ) )  =  ( ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝐷 ) ) ‘ ( ( 𝐼  ·  𝐸 )  +  𝐶 ) ) ) | 
						
							| 37 |  | eqid | ⊢ ( -g ‘ 𝑅 )  =  ( -g ‘ 𝑅 ) | 
						
							| 38 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 39 | 1 4 5 21 38 13 15 30 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 40 | 1 4 5 21 38 13 15 34 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐷 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 41 | 5 9 8 10 | lmodvscl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐼  ∈  𝐵  ∧  𝐸  ∈  𝑉 )  →  ( 𝐼  ·  𝐸 )  ∈  𝑉 ) | 
						
							| 42 | 23 18 28 41 | syl3anc | ⊢ ( 𝜑  →  ( 𝐼  ·  𝐸 )  ∈  𝑉 ) | 
						
							| 43 | 33 16 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 44 | 5 6 | lmodvacl | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝐼  ·  𝐸 )  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ( 𝐼  ·  𝐸 )  +  𝐶 )  ∈  𝑉 ) | 
						
							| 45 | 23 42 43 44 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐼  ·  𝐸 )  +  𝐶 )  ∈  𝑉 ) | 
						
							| 46 | 1 4 5 9 37 21 38 22 15 39 40 45 | lcdvsubval | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝐷 ) ) ‘ ( ( 𝐼  ·  𝐸 )  +  𝐶 ) )  =  ( ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ‘ ( ( 𝐼  ·  𝐸 )  +  𝐶 ) ) ( -g ‘ 𝑅 ) ( ( 𝑆 ‘ 𝐷 ) ‘ ( ( 𝐼  ·  𝐸 )  +  𝐶 ) ) ) ) | 
						
							| 47 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 48 | 1 4 5 6 9 47 13 15 42 43 30 | hdmaplna1 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ‘ ( ( 𝐼  ·  𝐸 )  +  𝐶 ) )  =  ( ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ‘ ( 𝐼  ·  𝐸 ) ) ( +g ‘ 𝑅 ) ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ‘ 𝐶 ) ) ) | 
						
							| 49 | 1 4 5 8 9 10 11 13 14 15 42 28 19 | hdmapglnm2 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ‘ ( 𝐼  ·  𝐸 ) )  =  ( ( ( 𝑆 ‘ 𝐸 ) ‘ ( 𝐼  ·  𝐸 ) )  ×  ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 50 | 1 4 5 8 9 10 11 13 15 28 28 18 | hdmaplnm1 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐸 ) ‘ ( 𝐼  ·  𝐸 ) )  =  ( 𝐼  ×  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 ) ) ) | 
						
							| 51 |  | eqid | ⊢ ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 52 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 53 | 1 2 51 13 15 4 9 52 | hdmapevec2 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 54 | 53 | oveq2d | ⊢ ( 𝜑  →  ( 𝐼  ×  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 ) )  =  ( 𝐼  ×  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 55 | 9 | lmodring | ⊢ ( 𝑈  ∈  LMod  →  𝑅  ∈  Ring ) | 
						
							| 56 | 23 55 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 57 | 10 11 52 | ringridm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝐵 )  →  ( 𝐼  ×  ( 1r ‘ 𝑅 ) )  =  𝐼 ) | 
						
							| 58 | 56 18 57 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼  ×  ( 1r ‘ 𝑅 ) )  =  𝐼 ) | 
						
							| 59 | 50 54 58 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐸 ) ‘ ( 𝐼  ·  𝐸 ) )  =  𝐼 ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝐸 ) ‘ ( 𝐼  ·  𝐸 ) )  ×  ( 𝐺 ‘ 𝐽 ) )  =  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 61 | 49 60 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ‘ ( 𝐼  ·  𝐸 ) )  =  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 62 | 1 4 5 8 9 10 11 13 14 15 43 28 19 | hdmapglnm2 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ‘ 𝐶 )  =  ( ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 )  ×  ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 63 | 1 2 3 4 5 9 10 11 12 13 15 16 | hdmapinvlem1 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 )  =   0  ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 )  ×  ( 𝐺 ‘ 𝐽 ) )  =  (  0   ×  ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 65 | 1 4 9 10 14 15 19 | hgmapcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐽 )  ∈  𝐵 ) | 
						
							| 66 | 10 11 12 | ringlz | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐺 ‘ 𝐽 )  ∈  𝐵 )  →  (  0   ×  ( 𝐺 ‘ 𝐽 ) )  =   0  ) | 
						
							| 67 | 56 65 66 | syl2anc | ⊢ ( 𝜑  →  (  0   ×  ( 𝐺 ‘ 𝐽 ) )  =   0  ) | 
						
							| 68 | 62 64 67 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ‘ 𝐶 )  =   0  ) | 
						
							| 69 | 61 68 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ‘ ( 𝐼  ·  𝐸 ) ) ( +g ‘ 𝑅 ) ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ‘ 𝐶 ) )  =  ( ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ( +g ‘ 𝑅 )  0  ) ) | 
						
							| 70 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 71 | 56 70 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 72 | 9 10 11 | lmodmcl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐼  ∈  𝐵  ∧  ( 𝐺 ‘ 𝐽 )  ∈  𝐵 )  →  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) )  ∈  𝐵 ) | 
						
							| 73 | 23 18 65 72 | syl3anc | ⊢ ( 𝜑  →  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) )  ∈  𝐵 ) | 
						
							| 74 | 10 47 12 | grprid | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) )  ∈  𝐵 )  →  ( ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ( +g ‘ 𝑅 )  0  )  =  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 75 | 71 73 74 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ( +g ‘ 𝑅 )  0  )  =  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 76 | 48 69 75 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ‘ ( ( 𝐼  ·  𝐸 )  +  𝐶 ) )  =  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 77 | 1 4 5 6 9 47 13 15 42 43 34 | hdmaplna1 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐷 ) ‘ ( ( 𝐼  ·  𝐸 )  +  𝐶 ) )  =  ( ( ( 𝑆 ‘ 𝐷 ) ‘ ( 𝐼  ·  𝐸 ) ) ( +g ‘ 𝑅 ) ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) ) | 
						
							| 78 | 1 4 5 8 9 10 11 13 15 28 34 18 | hdmaplnm1 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐷 ) ‘ ( 𝐼  ·  𝐸 ) )  =  ( 𝐼  ×  ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐸 ) ) ) | 
						
							| 79 | 1 2 3 4 5 9 10 11 12 13 15 17 | hdmapinvlem2 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐸 )  =   0  ) | 
						
							| 80 | 79 | oveq2d | ⊢ ( 𝜑  →  ( 𝐼  ×  ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐸 ) )  =  ( 𝐼  ×   0  ) ) | 
						
							| 81 | 10 11 12 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝐵 )  →  ( 𝐼  ×   0  )  =   0  ) | 
						
							| 82 | 56 18 81 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼  ×   0  )  =   0  ) | 
						
							| 83 | 78 80 82 | 3eqtrrd | ⊢ ( 𝜑  →   0   =  ( ( 𝑆 ‘ 𝐷 ) ‘ ( 𝐼  ·  𝐸 ) ) ) | 
						
							| 84 | 83 20 | oveq12d | ⊢ ( 𝜑  →  (  0  ( +g ‘ 𝑅 ) ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) )  =  ( ( ( 𝑆 ‘ 𝐷 ) ‘ ( 𝐼  ·  𝐸 ) ) ( +g ‘ 𝑅 ) ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) ) | 
						
							| 85 | 10 47 12 | grplid | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) )  ∈  𝐵 )  →  (  0  ( +g ‘ 𝑅 ) ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) )  =  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 86 | 71 73 85 | syl2anc | ⊢ ( 𝜑  →  (  0  ( +g ‘ 𝑅 ) ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) )  =  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 87 | 77 84 86 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐷 ) ‘ ( ( 𝐼  ·  𝐸 )  +  𝐶 ) )  =  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 88 | 76 87 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ‘ ( ( 𝐼  ·  𝐸 )  +  𝐶 ) ) ( -g ‘ 𝑅 ) ( ( 𝑆 ‘ 𝐷 ) ‘ ( ( 𝐼  ·  𝐸 )  +  𝐶 ) ) )  =  ( ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ( -g ‘ 𝑅 ) ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ) ) | 
						
							| 89 | 46 88 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ ( 𝐽  ·  𝐸 ) ) ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝐷 ) ) ‘ ( ( 𝐼  ·  𝐸 )  +  𝐶 ) )  =  ( ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ( -g ‘ 𝑅 ) ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ) ) | 
						
							| 90 | 10 12 37 | grpsubid | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) )  ∈  𝐵 )  →  ( ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ( -g ‘ 𝑅 ) ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) )  =   0  ) | 
						
							| 91 | 71 73 90 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) ( -g ‘ 𝑅 ) ( 𝐼  ×  ( 𝐺 ‘ 𝐽 ) ) )  =   0  ) | 
						
							| 92 | 36 89 91 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( ( 𝐽  ·  𝐸 )  −  𝐷 ) ) ‘ ( ( 𝐼  ·  𝐸 )  +  𝐶 ) )  =   0  ) |