Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapinvlem3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapinvlem3.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
3 |
|
hdmapinvlem3.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmapinvlem3.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hdmapinvlem3.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
hdmapinvlem3.p |
⊢ + = ( +g ‘ 𝑈 ) |
7 |
|
hdmapinvlem3.m |
⊢ − = ( -g ‘ 𝑈 ) |
8 |
|
hdmapinvlem3.q |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
9 |
|
hdmapinvlem3.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
10 |
|
hdmapinvlem3.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
11 |
|
hdmapinvlem3.t |
⊢ × = ( .r ‘ 𝑅 ) |
12 |
|
hdmapinvlem3.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
13 |
|
hdmapinvlem3.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
hdmapinvlem3.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
hdmapinvlem3.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
|
hdmapinvlem3.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
17 |
|
hdmapinvlem3.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
18 |
|
hdmapinvlem3.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝐵 ) |
19 |
|
hdmapinvlem3.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝐵 ) |
20 |
|
hdmapinvlem3.ij |
⊢ ( 𝜑 → ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) = ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) |
21 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
22 |
|
eqid |
⊢ ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
23 |
1 4 15
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
25 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
26 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
27 |
1 24 25 4 5 26 2 15
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
28 |
27
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
29 |
5 9 8 10
|
lmodvscl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐽 ∈ 𝐵 ∧ 𝐸 ∈ 𝑉 ) → ( 𝐽 · 𝐸 ) ∈ 𝑉 ) |
30 |
23 19 28 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝐽 · 𝐸 ) ∈ 𝑉 ) |
31 |
28
|
snssd |
⊢ ( 𝜑 → { 𝐸 } ⊆ 𝑉 ) |
32 |
1 4 5 3
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐸 } ⊆ 𝑉 ) → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
33 |
15 31 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
34 |
33 17
|
sseldd |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
35 |
1 4 5 7 21 22 13 15 30 34
|
hdmapsub |
⊢ ( 𝜑 → ( 𝑆 ‘ ( ( 𝐽 · 𝐸 ) − 𝐷 ) ) = ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝐷 ) ) ) |
36 |
35
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( ( 𝐽 · 𝐸 ) − 𝐷 ) ) ‘ ( ( 𝐼 · 𝐸 ) + 𝐶 ) ) = ( ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝐷 ) ) ‘ ( ( 𝐼 · 𝐸 ) + 𝐶 ) ) ) |
37 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
38 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
39 |
1 4 5 21 38 13 15 30
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
40 |
1 4 5 21 38 13 15 34
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐷 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
41 |
5 9 8 10
|
lmodvscl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐼 ∈ 𝐵 ∧ 𝐸 ∈ 𝑉 ) → ( 𝐼 · 𝐸 ) ∈ 𝑉 ) |
42 |
23 18 28 41
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 · 𝐸 ) ∈ 𝑉 ) |
43 |
33 16
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
44 |
5 6
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐼 · 𝐸 ) ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝐼 · 𝐸 ) + 𝐶 ) ∈ 𝑉 ) |
45 |
23 42 43 44
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 · 𝐸 ) + 𝐶 ) ∈ 𝑉 ) |
46 |
1 4 5 9 37 21 38 22 15 39 40 45
|
lcdvsubval |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝐷 ) ) ‘ ( ( 𝐼 · 𝐸 ) + 𝐶 ) ) = ( ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ‘ ( ( 𝐼 · 𝐸 ) + 𝐶 ) ) ( -g ‘ 𝑅 ) ( ( 𝑆 ‘ 𝐷 ) ‘ ( ( 𝐼 · 𝐸 ) + 𝐶 ) ) ) ) |
47 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
48 |
1 4 5 6 9 47 13 15 42 43 30
|
hdmaplna1 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ‘ ( ( 𝐼 · 𝐸 ) + 𝐶 ) ) = ( ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ‘ ( 𝐼 · 𝐸 ) ) ( +g ‘ 𝑅 ) ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ‘ 𝐶 ) ) ) |
49 |
1 4 5 8 9 10 11 13 14 15 42 28 19
|
hdmapglnm2 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ‘ ( 𝐼 · 𝐸 ) ) = ( ( ( 𝑆 ‘ 𝐸 ) ‘ ( 𝐼 · 𝐸 ) ) × ( 𝐺 ‘ 𝐽 ) ) ) |
50 |
1 4 5 8 9 10 11 13 15 28 28 18
|
hdmaplnm1 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐸 ) ‘ ( 𝐼 · 𝐸 ) ) = ( 𝐼 × ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 ) ) ) |
51 |
|
eqid |
⊢ ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
52 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
53 |
1 2 51 13 15 4 9 52
|
hdmapevec2 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 ) = ( 1r ‘ 𝑅 ) ) |
54 |
53
|
oveq2d |
⊢ ( 𝜑 → ( 𝐼 × ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 ) ) = ( 𝐼 × ( 1r ‘ 𝑅 ) ) ) |
55 |
9
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝑅 ∈ Ring ) |
56 |
23 55
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
57 |
10 11 52
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝐵 ) → ( 𝐼 × ( 1r ‘ 𝑅 ) ) = 𝐼 ) |
58 |
56 18 57
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 × ( 1r ‘ 𝑅 ) ) = 𝐼 ) |
59 |
50 54 58
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐸 ) ‘ ( 𝐼 · 𝐸 ) ) = 𝐼 ) |
60 |
59
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐸 ) ‘ ( 𝐼 · 𝐸 ) ) × ( 𝐺 ‘ 𝐽 ) ) = ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) |
61 |
49 60
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ‘ ( 𝐼 · 𝐸 ) ) = ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) |
62 |
1 4 5 8 9 10 11 13 14 15 43 28 19
|
hdmapglnm2 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ‘ 𝐶 ) = ( ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 ) × ( 𝐺 ‘ 𝐽 ) ) ) |
63 |
1 2 3 4 5 9 10 11 12 13 15 16
|
hdmapinvlem1 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 ) = 0 ) |
64 |
63
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 ) × ( 𝐺 ‘ 𝐽 ) ) = ( 0 × ( 𝐺 ‘ 𝐽 ) ) ) |
65 |
1 4 9 10 14 15 19
|
hgmapcl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐽 ) ∈ 𝐵 ) |
66 |
10 11 12
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐺 ‘ 𝐽 ) ∈ 𝐵 ) → ( 0 × ( 𝐺 ‘ 𝐽 ) ) = 0 ) |
67 |
56 65 66
|
syl2anc |
⊢ ( 𝜑 → ( 0 × ( 𝐺 ‘ 𝐽 ) ) = 0 ) |
68 |
62 64 67
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ‘ 𝐶 ) = 0 ) |
69 |
61 68
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ‘ ( 𝐼 · 𝐸 ) ) ( +g ‘ 𝑅 ) ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ‘ 𝐶 ) ) = ( ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ( +g ‘ 𝑅 ) 0 ) ) |
70 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
71 |
56 70
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
72 |
9 10 11
|
lmodmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐼 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝐽 ) ∈ 𝐵 ) → ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ∈ 𝐵 ) |
73 |
23 18 65 72
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ∈ 𝐵 ) |
74 |
10 47 12
|
grprid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ∈ 𝐵 ) → ( ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ( +g ‘ 𝑅 ) 0 ) = ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) |
75 |
71 73 74
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ( +g ‘ 𝑅 ) 0 ) = ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) |
76 |
48 69 75
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ‘ ( ( 𝐼 · 𝐸 ) + 𝐶 ) ) = ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) |
77 |
1 4 5 6 9 47 13 15 42 43 34
|
hdmaplna1 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐷 ) ‘ ( ( 𝐼 · 𝐸 ) + 𝐶 ) ) = ( ( ( 𝑆 ‘ 𝐷 ) ‘ ( 𝐼 · 𝐸 ) ) ( +g ‘ 𝑅 ) ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) ) |
78 |
1 4 5 8 9 10 11 13 15 28 34 18
|
hdmaplnm1 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐷 ) ‘ ( 𝐼 · 𝐸 ) ) = ( 𝐼 × ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐸 ) ) ) |
79 |
1 2 3 4 5 9 10 11 12 13 15 17
|
hdmapinvlem2 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐸 ) = 0 ) |
80 |
79
|
oveq2d |
⊢ ( 𝜑 → ( 𝐼 × ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐸 ) ) = ( 𝐼 × 0 ) ) |
81 |
10 11 12
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝐵 ) → ( 𝐼 × 0 ) = 0 ) |
82 |
56 18 81
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 × 0 ) = 0 ) |
83 |
78 80 82
|
3eqtrrd |
⊢ ( 𝜑 → 0 = ( ( 𝑆 ‘ 𝐷 ) ‘ ( 𝐼 · 𝐸 ) ) ) |
84 |
83 20
|
oveq12d |
⊢ ( 𝜑 → ( 0 ( +g ‘ 𝑅 ) ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) = ( ( ( 𝑆 ‘ 𝐷 ) ‘ ( 𝐼 · 𝐸 ) ) ( +g ‘ 𝑅 ) ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) ) |
85 |
10 47 12
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) = ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) |
86 |
71 73 85
|
syl2anc |
⊢ ( 𝜑 → ( 0 ( +g ‘ 𝑅 ) ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) = ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) |
87 |
77 84 86
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐷 ) ‘ ( ( 𝐼 · 𝐸 ) + 𝐶 ) ) = ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) |
88 |
76 87
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ‘ ( ( 𝐼 · 𝐸 ) + 𝐶 ) ) ( -g ‘ 𝑅 ) ( ( 𝑆 ‘ 𝐷 ) ‘ ( ( 𝐼 · 𝐸 ) + 𝐶 ) ) ) = ( ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ( -g ‘ 𝑅 ) ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) ) |
89 |
46 88
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ ( 𝐽 · 𝐸 ) ) ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝐷 ) ) ‘ ( ( 𝐼 · 𝐸 ) + 𝐶 ) ) = ( ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ( -g ‘ 𝑅 ) ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) ) |
90 |
10 12 37
|
grpsubid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ∈ 𝐵 ) → ( ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ( -g ‘ 𝑅 ) ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) = 0 ) |
91 |
71 73 90
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ( -g ‘ 𝑅 ) ( 𝐼 × ( 𝐺 ‘ 𝐽 ) ) ) = 0 ) |
92 |
36 89 91
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( ( 𝐽 · 𝐸 ) − 𝐷 ) ) ‘ ( ( 𝐼 · 𝐸 ) + 𝐶 ) ) = 0 ) |