| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapval0.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmapval0.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmapval0.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | hgmapval0.o | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | hgmapval0.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hgmapval0.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 9 | 1 2 7 8 6 | dvh1dim | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( Base ‘ 𝑈 ) 𝑥  ≠  ( 0g ‘ 𝑈 ) ) | 
						
							| 10 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 12 |  | eqid | ⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 13 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  𝑥  ∈  ( Base ‘ 𝑈 ) ) | 
						
							| 15 | 1 2 7 8 10 11 12 13 14 | hdmapeq0 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ↔  𝑥  =  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 16 | 15 | biimpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  →  𝑥  =  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 17 | 16 | necon3ad | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( 𝑥  ≠  ( 0g ‘ 𝑈 )  →  ¬  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 18 | 17 | 3impia | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ¬  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 19 | 1 2 6 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 20 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑈 )  =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 21 | 7 3 20 4 8 | lmod0vs | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  (  0  (  ·𝑠  ‘ 𝑈 ) 𝑥 )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 22 | 19 21 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  (  0  (  ·𝑠  ‘ 𝑈 ) 𝑥 )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ (  0  (  ·𝑠  ‘ 𝑈 ) 𝑥 ) )  =  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0g ‘ 𝑈 ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 25 |  | eqid | ⊢ (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 26 | 3 24 4 | lmod0cl | ⊢ ( 𝑈  ∈  LMod  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 27 | 19 26 | syl | ⊢ ( 𝜑  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 29 | 1 2 7 20 3 24 10 25 12 5 13 14 28 | hgmapvs | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ (  0  (  ·𝑠  ‘ 𝑈 ) 𝑥 ) )  =  ( ( 𝐺 ‘  0  ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) | 
						
							| 30 | 1 2 8 10 11 12 6 | hdmapval0 | ⊢ ( 𝜑  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0g ‘ 𝑈 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0g ‘ 𝑈 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 32 | 23 29 31 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( ( 𝐺 ‘  0  ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 33 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 34 |  | eqid | ⊢ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 35 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 36 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 37 | 1 10 6 | lcdlvec | ⊢ ( 𝜑  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LVec ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LVec ) | 
						
							| 39 | 1 2 13 | dvhlmod | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  𝑈  ∈  LMod ) | 
						
							| 40 | 39 26 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 41 | 1 2 3 24 10 34 35 5 13 40 | hgmapdcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( 𝐺 ‘  0  )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 42 | 1 2 7 10 33 12 13 14 | hdmapcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 43 | 33 25 34 35 36 11 38 41 42 | lvecvs0or | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( ( ( 𝐺 ‘  0  ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ↔  ( ( 𝐺 ‘  0  )  =  ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  ∨  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) | 
						
							| 44 | 32 43 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( ( 𝐺 ‘  0  )  =  ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  ∨  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 45 | 44 | orcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ∨  ( 𝐺 ‘  0  )  =  ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) | 
						
							| 46 | 45 | ord | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  ( ¬  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  →  ( 𝐺 ‘  0  )  =  ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) | 
						
							| 47 | 46 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( ¬  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  →  ( 𝐺 ‘  0  )  =  ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) | 
						
							| 48 | 18 47 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐺 ‘  0  )  =  ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 49 | 48 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( Base ‘ 𝑈 ) 𝑥  ≠  ( 0g ‘ 𝑈 )  →  ( 𝐺 ‘  0  )  =  ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) | 
						
							| 50 | 9 49 | mpd | ⊢ ( 𝜑  →  ( 𝐺 ‘  0  )  =  ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 51 | 1 2 3 4 10 34 36 6 | lcd0 | ⊢ ( 𝜑  →  ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  =   0  ) | 
						
							| 52 | 50 51 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺 ‘  0  )  =   0  ) |