Metamath Proof Explorer


Theorem hgmapval0

Description: Value of the scalar sigma map at zero. (Contributed by NM, 12-Jun-2015)

Ref Expression
Hypotheses hgmapval0.h 𝐻 = ( LHyp ‘ 𝐾 )
hgmapval0.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hgmapval0.r 𝑅 = ( Scalar ‘ 𝑈 )
hgmapval0.o 0 = ( 0g𝑅 )
hgmapval0.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
hgmapval0.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion hgmapval0 ( 𝜑 → ( 𝐺0 ) = 0 )

Proof

Step Hyp Ref Expression
1 hgmapval0.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hgmapval0.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hgmapval0.r 𝑅 = ( Scalar ‘ 𝑈 )
4 hgmapval0.o 0 = ( 0g𝑅 )
5 hgmapval0.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
6 hgmapval0.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
8 eqid ( 0g𝑈 ) = ( 0g𝑈 )
9 1 2 7 8 6 dvh1dim ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝑈 ) 𝑥 ≠ ( 0g𝑈 ) )
10 eqid ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
12 eqid ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
13 6 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simpr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → 𝑥 ∈ ( Base ‘ 𝑈 ) )
15 1 2 7 8 10 11 12 13 14 hdmapeq0 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 𝑥 = ( 0g𝑈 ) ) )
16 15 biimpd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑥 = ( 0g𝑈 ) ) )
17 16 necon3ad ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑥 ≠ ( 0g𝑈 ) → ¬ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
18 17 3impia ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ¬ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
19 1 2 6 dvhlmod ( 𝜑𝑈 ∈ LMod )
20 eqid ( ·𝑠𝑈 ) = ( ·𝑠𝑈 )
21 7 3 20 4 8 lmod0vs ( ( 𝑈 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( 0 ( ·𝑠𝑈 ) 𝑥 ) = ( 0g𝑈 ) )
22 19 21 sylan ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( 0 ( ·𝑠𝑈 ) 𝑥 ) = ( 0g𝑈 ) )
23 22 fveq2d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0 ( ·𝑠𝑈 ) 𝑥 ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0g𝑈 ) ) )
24 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
25 eqid ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
26 3 24 4 lmod0cl ( 𝑈 ∈ LMod → 0 ∈ ( Base ‘ 𝑅 ) )
27 19 26 syl ( 𝜑0 ∈ ( Base ‘ 𝑅 ) )
28 27 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → 0 ∈ ( Base ‘ 𝑅 ) )
29 1 2 7 20 3 24 10 25 12 5 13 14 28 hgmapvs ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0 ( ·𝑠𝑈 ) 𝑥 ) ) = ( ( 𝐺0 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) )
30 1 2 8 10 11 12 6 hdmapval0 ( 𝜑 → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0g𝑈 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
31 30 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0g𝑈 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
32 23 29 31 3eqtr3d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( 𝐺0 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
33 eqid ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
34 eqid ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
35 eqid ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
36 eqid ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
37 1 10 6 lcdlvec ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LVec )
38 37 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LVec )
39 1 2 13 dvhlmod ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → 𝑈 ∈ LMod )
40 39 26 syl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → 0 ∈ ( Base ‘ 𝑅 ) )
41 1 2 3 24 10 34 35 5 13 40 hgmapdcl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( 𝐺0 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
42 1 2 7 10 33 12 13 14 hdmapcl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
43 33 25 34 35 36 11 38 41 42 lvecvs0or ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( 𝐺0 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ ( ( 𝐺0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∨ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) )
44 32 43 mpbid ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( 𝐺0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∨ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
45 44 orcomd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∨ ( 𝐺0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) )
46 45 ord ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ¬ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝐺0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) )
47 46 3adant3 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( ¬ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝐺0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) )
48 18 47 mpd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( 𝐺0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
49 48 rexlimdv3a ( 𝜑 → ( ∃ 𝑥 ∈ ( Base ‘ 𝑈 ) 𝑥 ≠ ( 0g𝑈 ) → ( 𝐺0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) )
50 9 49 mpd ( 𝜑 → ( 𝐺0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
51 1 2 3 4 10 34 36 6 lcd0 ( 𝜑 → ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = 0 )
52 50 51 eqtrd ( 𝜑 → ( 𝐺0 ) = 0 )