Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapval0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hgmapval0.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hgmapval0.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
4 |
|
hgmapval0.o |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
hgmapval0.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hgmapval0.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
9 |
1 2 7 8 6
|
dvh1dim |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝑈 ) 𝑥 ≠ ( 0g ‘ 𝑈 ) ) |
10 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
|
eqid |
⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → 𝑥 ∈ ( Base ‘ 𝑈 ) ) |
15 |
1 2 7 8 10 11 12 13 14
|
hdmapeq0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 𝑥 = ( 0g ‘ 𝑈 ) ) ) |
16 |
15
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑈 ) ) ) |
17 |
16
|
necon3ad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑥 ≠ ( 0g ‘ 𝑈 ) → ¬ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
18 |
17
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ¬ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
19 |
1 2 6
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
20 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
21 |
7 3 20 4 8
|
lmod0vs |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( 0 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) = ( 0g ‘ 𝑈 ) ) |
22 |
19 21
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( 0 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) = ( 0g ‘ 𝑈 ) ) |
23 |
22
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0g ‘ 𝑈 ) ) ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
25 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
26 |
3 24 4
|
lmod0cl |
⊢ ( 𝑈 ∈ LMod → 0 ∈ ( Base ‘ 𝑅 ) ) |
27 |
19 26
|
syl |
⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑅 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
29 |
1 2 7 20 3 24 10 25 12 5 13 14 28
|
hgmapvs |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) = ( ( 𝐺 ‘ 0 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
30 |
1 2 8 10 11 12 6
|
hdmapval0 |
⊢ ( 𝜑 → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0g ‘ 𝑈 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0g ‘ 𝑈 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
32 |
23 29 31
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( 𝐺 ‘ 0 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
33 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
34 |
|
eqid |
⊢ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
35 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
36 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
37 |
1 10 6
|
lcdlvec |
⊢ ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LVec ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LVec ) |
39 |
1 2 13
|
dvhlmod |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → 𝑈 ∈ LMod ) |
40 |
39 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
41 |
1 2 3 24 10 34 35 5 13 40
|
hgmapdcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( 𝐺 ‘ 0 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
42 |
1 2 7 10 33 12 13 14
|
hdmapcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
43 |
33 25 34 35 36 11 38 41 42
|
lvecvs0or |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( 𝐺 ‘ 0 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ ( ( 𝐺 ‘ 0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∨ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) |
44 |
32 43
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( 𝐺 ‘ 0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∨ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
45 |
44
|
orcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∨ ( 𝐺 ‘ 0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) |
46 |
45
|
ord |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( ¬ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝐺 ‘ 0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) |
47 |
46
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( ¬ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝐺 ‘ 0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) |
48 |
18 47
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐺 ‘ 0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
49 |
48
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( Base ‘ 𝑈 ) 𝑥 ≠ ( 0g ‘ 𝑈 ) → ( 𝐺 ‘ 0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) |
50 |
9 49
|
mpd |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
51 |
1 2 3 4 10 34 36 6
|
lcd0 |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = 0 ) |
52 |
50 51
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = 0 ) |