| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmap11.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hgmap11.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hgmap11.r |  |-  R = ( Scalar ` U ) | 
						
							| 4 |  | hgmap11.b |  |-  B = ( Base ` R ) | 
						
							| 5 |  | hgmap11.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 6 |  | hgmap11.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 7 |  | hgmap11.x |  |-  ( ph -> X e. B ) | 
						
							| 8 |  | hgmap11.y |  |-  ( ph -> Y e. B ) | 
						
							| 9 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 10 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 11 | 1 2 9 10 6 | dvh1dim |  |-  ( ph -> E. t e. ( Base ` U ) t =/= ( 0g ` U ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ph /\ ( G ` X ) = ( G ` Y ) ) -> E. t e. ( Base ` U ) t =/= ( 0g ` U ) ) | 
						
							| 13 |  | simp1r |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` X ) = ( G ` Y ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) | 
						
							| 15 |  | eqid |  |-  ( .s ` U ) = ( .s ` U ) | 
						
							| 16 |  | eqid |  |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | 
						
							| 17 |  | eqid |  |-  ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 18 |  | eqid |  |-  ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) | 
						
							| 19 |  | simp1l |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ph ) | 
						
							| 20 | 19 6 | syl |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 21 |  | simp2 |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> t e. ( Base ` U ) ) | 
						
							| 22 | 19 7 | syl |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> X e. B ) | 
						
							| 23 | 1 2 9 15 3 4 16 17 18 5 20 21 22 | hgmapvs |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) t ) ) = ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) | 
						
							| 24 | 19 8 | syl |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> Y e. B ) | 
						
							| 25 | 1 2 9 15 3 4 16 17 18 5 20 21 24 | hgmapvs |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) = ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) | 
						
							| 26 | 14 23 25 | 3eqtr4d |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) t ) ) = ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) ) | 
						
							| 27 | 1 2 6 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 28 | 19 27 | syl |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> U e. LMod ) | 
						
							| 29 | 9 3 15 4 | lmodvscl |  |-  ( ( U e. LMod /\ X e. B /\ t e. ( Base ` U ) ) -> ( X ( .s ` U ) t ) e. ( Base ` U ) ) | 
						
							| 30 | 28 22 21 29 | syl3anc |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( X ( .s ` U ) t ) e. ( Base ` U ) ) | 
						
							| 31 | 9 3 15 4 | lmodvscl |  |-  ( ( U e. LMod /\ Y e. B /\ t e. ( Base ` U ) ) -> ( Y ( .s ` U ) t ) e. ( Base ` U ) ) | 
						
							| 32 | 28 24 21 31 | syl3anc |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( Y ( .s ` U ) t ) e. ( Base ` U ) ) | 
						
							| 33 | 1 2 9 18 20 30 32 | hdmap11 |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) t ) ) = ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) <-> ( X ( .s ` U ) t ) = ( Y ( .s ` U ) t ) ) ) | 
						
							| 34 | 26 33 | mpbid |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( X ( .s ` U ) t ) = ( Y ( .s ` U ) t ) ) | 
						
							| 35 | 1 2 6 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 36 | 19 35 | syl |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> U e. LVec ) | 
						
							| 37 |  | simp3 |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> t =/= ( 0g ` U ) ) | 
						
							| 38 | 9 15 3 4 10 36 22 24 21 37 | lvecvscan2 |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( X ( .s ` U ) t ) = ( Y ( .s ` U ) t ) <-> X = Y ) ) | 
						
							| 39 | 34 38 | mpbid |  |-  ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> X = Y ) | 
						
							| 40 | 39 | rexlimdv3a |  |-  ( ( ph /\ ( G ` X ) = ( G ` Y ) ) -> ( E. t e. ( Base ` U ) t =/= ( 0g ` U ) -> X = Y ) ) | 
						
							| 41 | 12 40 | mpd |  |-  ( ( ph /\ ( G ` X ) = ( G ` Y ) ) -> X = Y ) | 
						
							| 42 | 41 | ex |  |-  ( ph -> ( ( G ` X ) = ( G ` Y ) -> X = Y ) ) | 
						
							| 43 |  | fveq2 |  |-  ( X = Y -> ( G ` X ) = ( G ` Y ) ) | 
						
							| 44 | 42 43 | impbid1 |  |-  ( ph -> ( ( G ` X ) = ( G ` Y ) <-> X = Y ) ) |