Step |
Hyp |
Ref |
Expression |
1 |
|
hgmap11.h |
|- H = ( LHyp ` K ) |
2 |
|
hgmap11.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hgmap11.r |
|- R = ( Scalar ` U ) |
4 |
|
hgmap11.b |
|- B = ( Base ` R ) |
5 |
|
hgmap11.g |
|- G = ( ( HGMap ` K ) ` W ) |
6 |
|
hgmap11.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
hgmap11.x |
|- ( ph -> X e. B ) |
8 |
|
hgmap11.y |
|- ( ph -> Y e. B ) |
9 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
10 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
11 |
1 2 9 10 6
|
dvh1dim |
|- ( ph -> E. t e. ( Base ` U ) t =/= ( 0g ` U ) ) |
12 |
11
|
adantr |
|- ( ( ph /\ ( G ` X ) = ( G ` Y ) ) -> E. t e. ( Base ` U ) t =/= ( 0g ` U ) ) |
13 |
|
simp1r |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` X ) = ( G ` Y ) ) |
14 |
13
|
oveq1d |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
15 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
16 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
17 |
|
eqid |
|- ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) |
18 |
|
eqid |
|- ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) |
19 |
|
simp1l |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ph ) |
20 |
19 6
|
syl |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
21 |
|
simp2 |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> t e. ( Base ` U ) ) |
22 |
19 7
|
syl |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> X e. B ) |
23 |
1 2 9 15 3 4 16 17 18 5 20 21 22
|
hgmapvs |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) t ) ) = ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
24 |
19 8
|
syl |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> Y e. B ) |
25 |
1 2 9 15 3 4 16 17 18 5 20 21 24
|
hgmapvs |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) = ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
26 |
14 23 25
|
3eqtr4d |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) t ) ) = ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) ) |
27 |
1 2 6
|
dvhlmod |
|- ( ph -> U e. LMod ) |
28 |
19 27
|
syl |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> U e. LMod ) |
29 |
9 3 15 4
|
lmodvscl |
|- ( ( U e. LMod /\ X e. B /\ t e. ( Base ` U ) ) -> ( X ( .s ` U ) t ) e. ( Base ` U ) ) |
30 |
28 22 21 29
|
syl3anc |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( X ( .s ` U ) t ) e. ( Base ` U ) ) |
31 |
9 3 15 4
|
lmodvscl |
|- ( ( U e. LMod /\ Y e. B /\ t e. ( Base ` U ) ) -> ( Y ( .s ` U ) t ) e. ( Base ` U ) ) |
32 |
28 24 21 31
|
syl3anc |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( Y ( .s ` U ) t ) e. ( Base ` U ) ) |
33 |
1 2 9 18 20 30 32
|
hdmap11 |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) t ) ) = ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) <-> ( X ( .s ` U ) t ) = ( Y ( .s ` U ) t ) ) ) |
34 |
26 33
|
mpbid |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( X ( .s ` U ) t ) = ( Y ( .s ` U ) t ) ) |
35 |
1 2 6
|
dvhlvec |
|- ( ph -> U e. LVec ) |
36 |
19 35
|
syl |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> U e. LVec ) |
37 |
|
simp3 |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> t =/= ( 0g ` U ) ) |
38 |
9 15 3 4 10 36 22 24 21 37
|
lvecvscan2 |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( X ( .s ` U ) t ) = ( Y ( .s ` U ) t ) <-> X = Y ) ) |
39 |
34 38
|
mpbid |
|- ( ( ( ph /\ ( G ` X ) = ( G ` Y ) ) /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> X = Y ) |
40 |
39
|
rexlimdv3a |
|- ( ( ph /\ ( G ` X ) = ( G ` Y ) ) -> ( E. t e. ( Base ` U ) t =/= ( 0g ` U ) -> X = Y ) ) |
41 |
12 40
|
mpd |
|- ( ( ph /\ ( G ` X ) = ( G ` Y ) ) -> X = Y ) |
42 |
41
|
ex |
|- ( ph -> ( ( G ` X ) = ( G ` Y ) -> X = Y ) ) |
43 |
|
fveq2 |
|- ( X = Y -> ( G ` X ) = ( G ` Y ) ) |
44 |
42 43
|
impbid1 |
|- ( ph -> ( ( G ` X ) = ( G ` Y ) <-> X = Y ) ) |