| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hgmaprn.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hgmaprn.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hgmaprn.r |
|- R = ( Scalar ` U ) |
| 4 |
|
hgmaprn.b |
|- B = ( Base ` R ) |
| 5 |
|
hgmaprn.g |
|- G = ( ( HGMap ` K ) ` W ) |
| 6 |
|
hgmaprn.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
1 2 3 4 5 6
|
hgmapfnN |
|- ( ph -> G Fn B ) |
| 8 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
| 9 |
|
eqid |
|- ( Scalar ` ( ( LCDual ` K ) ` W ) ) = ( Scalar ` ( ( LCDual ` K ) ` W ) ) |
| 10 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) |
| 11 |
6
|
adantr |
|- ( ( ph /\ z e. B ) -> ( K e. HL /\ W e. H ) ) |
| 12 |
|
simpr |
|- ( ( ph /\ z e. B ) -> z e. B ) |
| 13 |
1 2 3 4 8 9 10 5 11 12
|
hgmapdcl |
|- ( ( ph /\ z e. B ) -> ( G ` z ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 14 |
13
|
ralrimiva |
|- ( ph -> A. z e. B ( G ` z ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 15 |
|
fnfvrnss |
|- ( ( G Fn B /\ A. z e. B ( G ` z ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> ran G C_ ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 16 |
7 14 15
|
syl2anc |
|- ( ph -> ran G C_ ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 17 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 18 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
| 19 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 20 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
| 21 |
|
eqid |
|- ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) |
| 22 |
|
eqid |
|- ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) |
| 23 |
|
eqid |
|- ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) |
| 24 |
6
|
adantr |
|- ( ( ph /\ z e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 25 |
|
simpr |
|- ( ( ph /\ z e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> z e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 26 |
1 2 17 3 4 18 19 8 20 9 10 21 22 23 5 24 25
|
hgmaprnlem5N |
|- ( ( ph /\ z e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> z e. ran G ) |
| 27 |
16 26
|
eqelssd |
|- ( ph -> ran G = ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 28 |
1 2 3 4 8 9 10 6
|
lcdsbase |
|- ( ph -> ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = B ) |
| 29 |
27 28
|
eqtrd |
|- ( ph -> ran G = B ) |