Step |
Hyp |
Ref |
Expression |
1 |
|
hgmaprn.h |
|- H = ( LHyp ` K ) |
2 |
|
hgmaprn.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hgmaprn.r |
|- R = ( Scalar ` U ) |
4 |
|
hgmaprn.b |
|- B = ( Base ` R ) |
5 |
|
hgmaprn.g |
|- G = ( ( HGMap ` K ) ` W ) |
6 |
|
hgmaprn.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
1 2 3 4 5 6
|
hgmapfnN |
|- ( ph -> G Fn B ) |
8 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
9 |
|
eqid |
|- ( Scalar ` ( ( LCDual ` K ) ` W ) ) = ( Scalar ` ( ( LCDual ` K ) ` W ) ) |
10 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) |
11 |
6
|
adantr |
|- ( ( ph /\ z e. B ) -> ( K e. HL /\ W e. H ) ) |
12 |
|
simpr |
|- ( ( ph /\ z e. B ) -> z e. B ) |
13 |
1 2 3 4 8 9 10 5 11 12
|
hgmapdcl |
|- ( ( ph /\ z e. B ) -> ( G ` z ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
14 |
13
|
ralrimiva |
|- ( ph -> A. z e. B ( G ` z ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
15 |
|
fnfvrnss |
|- ( ( G Fn B /\ A. z e. B ( G ` z ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> ran G C_ ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
16 |
7 14 15
|
syl2anc |
|- ( ph -> ran G C_ ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
17 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
18 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
19 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
20 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
21 |
|
eqid |
|- ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) |
22 |
|
eqid |
|- ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) |
23 |
|
eqid |
|- ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) |
24 |
6
|
adantr |
|- ( ( ph /\ z e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
25 |
|
simpr |
|- ( ( ph /\ z e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> z e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
26 |
1 2 17 3 4 18 19 8 20 9 10 21 22 23 5 24 25
|
hgmaprnlem5N |
|- ( ( ph /\ z e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> z e. ran G ) |
27 |
16 26
|
eqelssd |
|- ( ph -> ran G = ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
28 |
1 2 3 4 8 9 10 6
|
lcdsbase |
|- ( ph -> ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = B ) |
29 |
27 28
|
eqtrd |
|- ( ph -> ran G = B ) |