| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmaprn.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hgmaprn.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hgmaprn.r |  |-  R = ( Scalar ` U ) | 
						
							| 4 |  | hgmaprn.b |  |-  B = ( Base ` R ) | 
						
							| 5 |  | hgmaprn.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 6 |  | hgmaprn.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 7 | 1 2 3 4 5 6 | hgmapfnN |  |-  ( ph -> G Fn B ) | 
						
							| 8 |  | eqid |  |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | 
						
							| 9 |  | eqid |  |-  ( Scalar ` ( ( LCDual ` K ) ` W ) ) = ( Scalar ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 11 | 6 | adantr |  |-  ( ( ph /\ z e. B ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ z e. B ) -> z e. B ) | 
						
							| 13 | 1 2 3 4 8 9 10 5 11 12 | hgmapdcl |  |-  ( ( ph /\ z e. B ) -> ( G ` z ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) | 
						
							| 14 | 13 | ralrimiva |  |-  ( ph -> A. z e. B ( G ` z ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) | 
						
							| 15 |  | fnfvrnss |  |-  ( ( G Fn B /\ A. z e. B ( G ` z ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> ran G C_ ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) | 
						
							| 16 | 7 14 15 | syl2anc |  |-  ( ph -> ran G C_ ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) | 
						
							| 17 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 18 |  | eqid |  |-  ( .s ` U ) = ( .s ` U ) | 
						
							| 19 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 20 |  | eqid |  |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 21 |  | eqid |  |-  ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 22 |  | eqid |  |-  ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 23 |  | eqid |  |-  ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) | 
						
							| 24 | 6 | adantr |  |-  ( ( ph /\ z e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 25 |  | simpr |  |-  ( ( ph /\ z e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> z e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) | 
						
							| 26 | 1 2 17 3 4 18 19 8 20 9 10 21 22 23 5 24 25 | hgmaprnlem5N |  |-  ( ( ph /\ z e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> z e. ran G ) | 
						
							| 27 | 16 26 | eqelssd |  |-  ( ph -> ran G = ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) | 
						
							| 28 | 1 2 3 4 8 9 10 6 | lcdsbase |  |-  ( ph -> ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = B ) | 
						
							| 29 | 27 28 | eqtrd |  |-  ( ph -> ran G = B ) |