Metamath Proof Explorer


Theorem hgmapdcl

Description: Closure of the vector space to dual space scalar map, in the scalar sigma map. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hgmapdcl.h
|- H = ( LHyp ` K )
hgmapdcl.u
|- U = ( ( DVecH ` K ) ` W )
hgmapdcl.r
|- R = ( Scalar ` U )
hgmapdcl.b
|- B = ( Base ` R )
hgmapdcl.c
|- C = ( ( LCDual ` K ) ` W )
hgmapdcl.q
|- Q = ( Scalar ` C )
hgmapdcl.a
|- A = ( Base ` Q )
hgmapdcl.g
|- G = ( ( HGMap ` K ) ` W )
hgmapdcl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hgmapdcl.f
|- ( ph -> F e. B )
Assertion hgmapdcl
|- ( ph -> ( G ` F ) e. A )

Proof

Step Hyp Ref Expression
1 hgmapdcl.h
 |-  H = ( LHyp ` K )
2 hgmapdcl.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hgmapdcl.r
 |-  R = ( Scalar ` U )
4 hgmapdcl.b
 |-  B = ( Base ` R )
5 hgmapdcl.c
 |-  C = ( ( LCDual ` K ) ` W )
6 hgmapdcl.q
 |-  Q = ( Scalar ` C )
7 hgmapdcl.a
 |-  A = ( Base ` Q )
8 hgmapdcl.g
 |-  G = ( ( HGMap ` K ) ` W )
9 hgmapdcl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 hgmapdcl.f
 |-  ( ph -> F e. B )
11 1 2 3 4 8 9 10 hgmapcl
 |-  ( ph -> ( G ` F ) e. B )
12 1 2 3 4 5 6 7 9 lcdsbase
 |-  ( ph -> A = B )
13 11 12 eleqtrrd
 |-  ( ph -> ( G ` F ) e. A )