Description: Closure of the vector space to dual space scalar map, in the scalar sigma map. (Contributed by NM, 6-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hgmapdcl.h | |- H = ( LHyp ` K ) |
|
hgmapdcl.u | |- U = ( ( DVecH ` K ) ` W ) |
||
hgmapdcl.r | |- R = ( Scalar ` U ) |
||
hgmapdcl.b | |- B = ( Base ` R ) |
||
hgmapdcl.c | |- C = ( ( LCDual ` K ) ` W ) |
||
hgmapdcl.q | |- Q = ( Scalar ` C ) |
||
hgmapdcl.a | |- A = ( Base ` Q ) |
||
hgmapdcl.g | |- G = ( ( HGMap ` K ) ` W ) |
||
hgmapdcl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
hgmapdcl.f | |- ( ph -> F e. B ) |
||
Assertion | hgmapdcl | |- ( ph -> ( G ` F ) e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmapdcl.h | |- H = ( LHyp ` K ) |
|
2 | hgmapdcl.u | |- U = ( ( DVecH ` K ) ` W ) |
|
3 | hgmapdcl.r | |- R = ( Scalar ` U ) |
|
4 | hgmapdcl.b | |- B = ( Base ` R ) |
|
5 | hgmapdcl.c | |- C = ( ( LCDual ` K ) ` W ) |
|
6 | hgmapdcl.q | |- Q = ( Scalar ` C ) |
|
7 | hgmapdcl.a | |- A = ( Base ` Q ) |
|
8 | hgmapdcl.g | |- G = ( ( HGMap ` K ) ` W ) |
|
9 | hgmapdcl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
10 | hgmapdcl.f | |- ( ph -> F e. B ) |
|
11 | 1 2 3 4 8 9 10 | hgmapcl | |- ( ph -> ( G ` F ) e. B ) |
12 | 1 2 3 4 5 6 7 9 | lcdsbase | |- ( ph -> A = B ) |
13 | 11 12 | eleqtrrd | |- ( ph -> ( G ` F ) e. A ) |