Description: Closure of the vector space to dual space scalar map, in the scalar sigma map. (Contributed by NM, 6-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hgmapdcl.h | |- H = ( LHyp ` K ) | |
| hgmapdcl.u | |- U = ( ( DVecH ` K ) ` W ) | ||
| hgmapdcl.r | |- R = ( Scalar ` U ) | ||
| hgmapdcl.b | |- B = ( Base ` R ) | ||
| hgmapdcl.c | |- C = ( ( LCDual ` K ) ` W ) | ||
| hgmapdcl.q | |- Q = ( Scalar ` C ) | ||
| hgmapdcl.a | |- A = ( Base ` Q ) | ||
| hgmapdcl.g | |- G = ( ( HGMap ` K ) ` W ) | ||
| hgmapdcl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) | ||
| hgmapdcl.f | |- ( ph -> F e. B ) | ||
| Assertion | hgmapdcl | |- ( ph -> ( G ` F ) e. A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hgmapdcl.h | |- H = ( LHyp ` K ) | |
| 2 | hgmapdcl.u | |- U = ( ( DVecH ` K ) ` W ) | |
| 3 | hgmapdcl.r | |- R = ( Scalar ` U ) | |
| 4 | hgmapdcl.b | |- B = ( Base ` R ) | |
| 5 | hgmapdcl.c | |- C = ( ( LCDual ` K ) ` W ) | |
| 6 | hgmapdcl.q | |- Q = ( Scalar ` C ) | |
| 7 | hgmapdcl.a | |- A = ( Base ` Q ) | |
| 8 | hgmapdcl.g | |- G = ( ( HGMap ` K ) ` W ) | |
| 9 | hgmapdcl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) | |
| 10 | hgmapdcl.f | |- ( ph -> F e. B ) | |
| 11 | 1 2 3 4 8 9 10 | hgmapcl | |- ( ph -> ( G ` F ) e. B ) | 
| 12 | 1 2 3 4 5 6 7 9 | lcdsbase | |- ( ph -> A = B ) | 
| 13 | 11 12 | eleqtrrd | |- ( ph -> ( G ` F ) e. A ) |