Metamath Proof Explorer


Theorem hgmapf1oN

Description: The scalar sigma map is a one-to-one onto function. (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmapf1o.h H = LHyp K
hgmapf1o.u U = DVecH K W
hgmapf1o.r R = Scalar U
hgmapf1o.b B = Base R
hgmapf1o.g G = HGMap K W
hgmapf1o.k φ K HL W H
Assertion hgmapf1oN φ G : B 1-1 onto B

Proof

Step Hyp Ref Expression
1 hgmapf1o.h H = LHyp K
2 hgmapf1o.u U = DVecH K W
3 hgmapf1o.r R = Scalar U
4 hgmapf1o.b B = Base R
5 hgmapf1o.g G = HGMap K W
6 hgmapf1o.k φ K HL W H
7 1 2 3 4 5 6 hgmapfnN φ G Fn B
8 1 2 3 4 5 6 hgmaprnN φ ran G = B
9 6 adantr φ x B y B K HL W H
10 simprl φ x B y B x B
11 simprr φ x B y B y B
12 1 2 3 4 5 9 10 11 hgmap11 φ x B y B G x = G y x = y
13 12 biimpd φ x B y B G x = G y x = y
14 13 ralrimivva φ x B y B G x = G y x = y
15 dff1o6 G : B 1-1 onto B G Fn B ran G = B x B y B G x = G y x = y
16 7 8 14 15 syl3anbrc φ G : B 1-1 onto B