Metamath Proof Explorer


Theorem hgmaprnlem4N

Description: Lemma for hgmaprnN . Eliminate s . (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprnlem1.h H = LHyp K
hgmaprnlem1.u U = DVecH K W
hgmaprnlem1.v V = Base U
hgmaprnlem1.r R = Scalar U
hgmaprnlem1.b B = Base R
hgmaprnlem1.t · ˙ = U
hgmaprnlem1.o 0 ˙ = 0 U
hgmaprnlem1.c C = LCDual K W
hgmaprnlem1.d D = Base C
hgmaprnlem1.p P = Scalar C
hgmaprnlem1.a A = Base P
hgmaprnlem1.e ˙ = C
hgmaprnlem1.q Q = 0 C
hgmaprnlem1.s S = HDMap K W
hgmaprnlem1.g G = HGMap K W
hgmaprnlem1.k φ K HL W H
hgmaprnlem1.z φ z A
hgmaprnlem1.t2 φ t V 0 ˙
Assertion hgmaprnlem4N φ z ran G

Proof

Step Hyp Ref Expression
1 hgmaprnlem1.h H = LHyp K
2 hgmaprnlem1.u U = DVecH K W
3 hgmaprnlem1.v V = Base U
4 hgmaprnlem1.r R = Scalar U
5 hgmaprnlem1.b B = Base R
6 hgmaprnlem1.t · ˙ = U
7 hgmaprnlem1.o 0 ˙ = 0 U
8 hgmaprnlem1.c C = LCDual K W
9 hgmaprnlem1.d D = Base C
10 hgmaprnlem1.p P = Scalar C
11 hgmaprnlem1.a A = Base P
12 hgmaprnlem1.e ˙ = C
13 hgmaprnlem1.q Q = 0 C
14 hgmaprnlem1.s S = HDMap K W
15 hgmaprnlem1.g G = HGMap K W
16 hgmaprnlem1.k φ K HL W H
17 hgmaprnlem1.z φ z A
18 hgmaprnlem1.t2 φ t V 0 ˙
19 1 8 16 lcdlmod φ C LMod
20 18 eldifad φ t V
21 1 2 3 8 9 14 16 20 hdmapcl φ S t D
22 9 10 12 11 lmodvscl C LMod z A S t D z ˙ S t D
23 19 17 21 22 syl3anc φ z ˙ S t D
24 1 8 9 14 16 hdmaprnN φ ran S = D
25 23 24 eleqtrrd φ z ˙ S t ran S
26 1 2 3 14 16 hdmapfnN φ S Fn V
27 fvelrnb S Fn V z ˙ S t ran S s V S s = z ˙ S t
28 26 27 syl φ z ˙ S t ran S s V S s = z ˙ S t
29 25 28 mpbid φ s V S s = z ˙ S t
30 16 3ad2ant1 φ s V S s = z ˙ S t K HL W H
31 17 3ad2ant1 φ s V S s = z ˙ S t z A
32 18 3ad2ant1 φ s V S s = z ˙ S t t V 0 ˙
33 simp2 φ s V S s = z ˙ S t s V
34 simp3 φ s V S s = z ˙ S t S s = z ˙ S t
35 eqid mapd K W = mapd K W
36 eqid LSpan U = LSpan U
37 eqid LSpan C = LSpan C
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31 32 33 34 35 36 37 hgmaprnlem3N φ s V S s = z ˙ S t z ran G
39 38 rexlimdv3a φ s V S s = z ˙ S t z ran G
40 29 39 mpd φ z ran G