| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmaprnlem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hgmaprnlem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hgmaprnlem1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hgmaprnlem1.r |  |-  R = ( Scalar ` U ) | 
						
							| 5 |  | hgmaprnlem1.b |  |-  B = ( Base ` R ) | 
						
							| 6 |  | hgmaprnlem1.t |  |-  .x. = ( .s ` U ) | 
						
							| 7 |  | hgmaprnlem1.o |  |-  .0. = ( 0g ` U ) | 
						
							| 8 |  | hgmaprnlem1.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 9 |  | hgmaprnlem1.d |  |-  D = ( Base ` C ) | 
						
							| 10 |  | hgmaprnlem1.p |  |-  P = ( Scalar ` C ) | 
						
							| 11 |  | hgmaprnlem1.a |  |-  A = ( Base ` P ) | 
						
							| 12 |  | hgmaprnlem1.e |  |-  .xb = ( .s ` C ) | 
						
							| 13 |  | hgmaprnlem1.q |  |-  Q = ( 0g ` C ) | 
						
							| 14 |  | hgmaprnlem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 15 |  | hgmaprnlem1.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 16 |  | hgmaprnlem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hgmaprnlem1.z |  |-  ( ph -> z e. A ) | 
						
							| 18 |  | hgmaprnlem1.t2 |  |-  ( ph -> t e. ( V \ { .0. } ) ) | 
						
							| 19 |  | hgmaprnlem1.s2 |  |-  ( ph -> s e. V ) | 
						
							| 20 |  | hgmaprnlem1.sz |  |-  ( ph -> ( S ` s ) = ( z .xb ( S ` t ) ) ) | 
						
							| 21 |  | hgmaprnlem1.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 22 |  | hgmaprnlem1.n |  |-  N = ( LSpan ` U ) | 
						
							| 23 |  | hgmaprnlem1.l |  |-  L = ( LSpan ` C ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | hgmaprnlem2N |  |-  ( ph -> ( N ` { s } ) C_ ( N ` { t } ) ) | 
						
							| 25 | 1 2 16 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 26 | 18 | eldifad |  |-  ( ph -> t e. V ) | 
						
							| 27 | 3 4 5 6 22 25 19 26 | lspsnss2 |  |-  ( ph -> ( ( N ` { s } ) C_ ( N ` { t } ) <-> E. k e. B s = ( k .x. t ) ) ) | 
						
							| 28 | 24 27 | mpbid |  |-  ( ph -> E. k e. B s = ( k .x. t ) ) | 
						
							| 29 | 16 | 3ad2ant1 |  |-  ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 30 | 17 | 3ad2ant1 |  |-  ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> z e. A ) | 
						
							| 31 | 18 | 3ad2ant1 |  |-  ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> t e. ( V \ { .0. } ) ) | 
						
							| 32 | 19 | 3ad2ant1 |  |-  ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> s e. V ) | 
						
							| 33 | 20 | 3ad2ant1 |  |-  ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> ( S ` s ) = ( z .xb ( S ` t ) ) ) | 
						
							| 34 |  | simp2 |  |-  ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> k e. B ) | 
						
							| 35 |  | simp3 |  |-  ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> s = ( k .x. t ) ) | 
						
							| 36 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 29 30 31 32 33 34 35 | hgmaprnlem1N |  |-  ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> z e. ran G ) | 
						
							| 37 | 36 | rexlimdv3a |  |-  ( ph -> ( E. k e. B s = ( k .x. t ) -> z e. ran G ) ) | 
						
							| 38 | 28 37 | mpd |  |-  ( ph -> z e. ran G ) |