Step |
Hyp |
Ref |
Expression |
1 |
|
hgmaprnlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
hgmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hgmaprnlem1.v |
|- V = ( Base ` U ) |
4 |
|
hgmaprnlem1.r |
|- R = ( Scalar ` U ) |
5 |
|
hgmaprnlem1.b |
|- B = ( Base ` R ) |
6 |
|
hgmaprnlem1.t |
|- .x. = ( .s ` U ) |
7 |
|
hgmaprnlem1.o |
|- .0. = ( 0g ` U ) |
8 |
|
hgmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
9 |
|
hgmaprnlem1.d |
|- D = ( Base ` C ) |
10 |
|
hgmaprnlem1.p |
|- P = ( Scalar ` C ) |
11 |
|
hgmaprnlem1.a |
|- A = ( Base ` P ) |
12 |
|
hgmaprnlem1.e |
|- .xb = ( .s ` C ) |
13 |
|
hgmaprnlem1.q |
|- Q = ( 0g ` C ) |
14 |
|
hgmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
15 |
|
hgmaprnlem1.g |
|- G = ( ( HGMap ` K ) ` W ) |
16 |
|
hgmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
17 |
|
hgmaprnlem1.z |
|- ( ph -> z e. A ) |
18 |
|
hgmaprnlem1.t2 |
|- ( ph -> t e. ( V \ { .0. } ) ) |
19 |
|
hgmaprnlem1.s2 |
|- ( ph -> s e. V ) |
20 |
|
hgmaprnlem1.sz |
|- ( ph -> ( S ` s ) = ( z .xb ( S ` t ) ) ) |
21 |
|
hgmaprnlem1.m |
|- M = ( ( mapd ` K ) ` W ) |
22 |
|
hgmaprnlem1.n |
|- N = ( LSpan ` U ) |
23 |
|
hgmaprnlem1.l |
|- L = ( LSpan ` C ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
hgmaprnlem2N |
|- ( ph -> ( N ` { s } ) C_ ( N ` { t } ) ) |
25 |
1 2 16
|
dvhlmod |
|- ( ph -> U e. LMod ) |
26 |
18
|
eldifad |
|- ( ph -> t e. V ) |
27 |
3 4 5 6 22 25 19 26
|
lspsnss2 |
|- ( ph -> ( ( N ` { s } ) C_ ( N ` { t } ) <-> E. k e. B s = ( k .x. t ) ) ) |
28 |
24 27
|
mpbid |
|- ( ph -> E. k e. B s = ( k .x. t ) ) |
29 |
16
|
3ad2ant1 |
|- ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> ( K e. HL /\ W e. H ) ) |
30 |
17
|
3ad2ant1 |
|- ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> z e. A ) |
31 |
18
|
3ad2ant1 |
|- ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> t e. ( V \ { .0. } ) ) |
32 |
19
|
3ad2ant1 |
|- ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> s e. V ) |
33 |
20
|
3ad2ant1 |
|- ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> ( S ` s ) = ( z .xb ( S ` t ) ) ) |
34 |
|
simp2 |
|- ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> k e. B ) |
35 |
|
simp3 |
|- ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> s = ( k .x. t ) ) |
36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 29 30 31 32 33 34 35
|
hgmaprnlem1N |
|- ( ( ph /\ k e. B /\ s = ( k .x. t ) ) -> z e. ran G ) |
37 |
36
|
rexlimdv3a |
|- ( ph -> ( E. k e. B s = ( k .x. t ) -> z e. ran G ) ) |
38 |
28 37
|
mpd |
|- ( ph -> z e. ran G ) |