| Step |
Hyp |
Ref |
Expression |
| 0 |
|
chlg |
|- hlG |
| 1 |
|
vg |
|- g |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vc |
|- c |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- g |
| 6 |
5 4
|
cfv |
|- ( Base ` g ) |
| 7 |
|
va |
|- a |
| 8 |
|
vb |
|- b |
| 9 |
7
|
cv |
|- a |
| 10 |
9 6
|
wcel |
|- a e. ( Base ` g ) |
| 11 |
8
|
cv |
|- b |
| 12 |
11 6
|
wcel |
|- b e. ( Base ` g ) |
| 13 |
10 12
|
wa |
|- ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) |
| 14 |
3
|
cv |
|- c |
| 15 |
9 14
|
wne |
|- a =/= c |
| 16 |
11 14
|
wne |
|- b =/= c |
| 17 |
|
citv |
|- Itv |
| 18 |
5 17
|
cfv |
|- ( Itv ` g ) |
| 19 |
14 11 18
|
co |
|- ( c ( Itv ` g ) b ) |
| 20 |
9 19
|
wcel |
|- a e. ( c ( Itv ` g ) b ) |
| 21 |
14 9 18
|
co |
|- ( c ( Itv ` g ) a ) |
| 22 |
11 21
|
wcel |
|- b e. ( c ( Itv ` g ) a ) |
| 23 |
20 22
|
wo |
|- ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) |
| 24 |
15 16 23
|
w3a |
|- ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) |
| 25 |
13 24
|
wa |
|- ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) |
| 26 |
25 7 8
|
copab |
|- { <. a , b >. | ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) } |
| 27 |
3 6 26
|
cmpt |
|- ( c e. ( Base ` g ) |-> { <. a , b >. | ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) } ) |
| 28 |
1 2 27
|
cmpt |
|- ( g e. _V |-> ( c e. ( Base ` g ) |-> { <. a , b >. | ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) } ) ) |
| 29 |
0 28
|
wceq |
|- hlG = ( g e. _V |-> ( c e. ( Base ` g ) |-> { <. a , b >. | ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) } ) ) |