| Step |
Hyp |
Ref |
Expression |
| 0 |
|
chlg |
⊢ hlG |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vc |
⊢ 𝑐 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑔 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
| 7 |
|
va |
⊢ 𝑎 |
| 8 |
|
vb |
⊢ 𝑏 |
| 9 |
7
|
cv |
⊢ 𝑎 |
| 10 |
9 6
|
wcel |
⊢ 𝑎 ∈ ( Base ‘ 𝑔 ) |
| 11 |
8
|
cv |
⊢ 𝑏 |
| 12 |
11 6
|
wcel |
⊢ 𝑏 ∈ ( Base ‘ 𝑔 ) |
| 13 |
10 12
|
wa |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑔 ) ∧ 𝑏 ∈ ( Base ‘ 𝑔 ) ) |
| 14 |
3
|
cv |
⊢ 𝑐 |
| 15 |
9 14
|
wne |
⊢ 𝑎 ≠ 𝑐 |
| 16 |
11 14
|
wne |
⊢ 𝑏 ≠ 𝑐 |
| 17 |
|
citv |
⊢ Itv |
| 18 |
5 17
|
cfv |
⊢ ( Itv ‘ 𝑔 ) |
| 19 |
14 11 18
|
co |
⊢ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) |
| 20 |
9 19
|
wcel |
⊢ 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) |
| 21 |
14 9 18
|
co |
⊢ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) |
| 22 |
11 21
|
wcel |
⊢ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) |
| 23 |
20 22
|
wo |
⊢ ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) |
| 24 |
15 16 23
|
w3a |
⊢ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) |
| 25 |
13 24
|
wa |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑔 ) ∧ 𝑏 ∈ ( Base ‘ 𝑔 ) ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) |
| 26 |
25 7 8
|
copab |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑔 ) ∧ 𝑏 ∈ ( Base ‘ 𝑔 ) ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) } |
| 27 |
3 6 26
|
cmpt |
⊢ ( 𝑐 ∈ ( Base ‘ 𝑔 ) ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑔 ) ∧ 𝑏 ∈ ( Base ‘ 𝑔 ) ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) } ) |
| 28 |
1 2 27
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ ( 𝑐 ∈ ( Base ‘ 𝑔 ) ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑔 ) ∧ 𝑏 ∈ ( Base ‘ 𝑔 ) ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) } ) ) |
| 29 |
0 28
|
wceq |
⊢ hlG = ( 𝑔 ∈ V ↦ ( 𝑐 ∈ ( Base ‘ 𝑔 ) ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑔 ) ∧ 𝑏 ∈ ( Base ‘ 𝑔 ) ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) } ) ) |