Step |
Hyp |
Ref |
Expression |
0 |
|
cismt |
|- Ismt |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
vh |
|- h |
4 |
|
vf |
|- f |
5 |
4
|
cv |
|- f |
6 |
|
cbs |
|- Base |
7 |
1
|
cv |
|- g |
8 |
7 6
|
cfv |
|- ( Base ` g ) |
9 |
3
|
cv |
|- h |
10 |
9 6
|
cfv |
|- ( Base ` h ) |
11 |
8 10 5
|
wf1o |
|- f : ( Base ` g ) -1-1-onto-> ( Base ` h ) |
12 |
|
va |
|- a |
13 |
|
vb |
|- b |
14 |
12
|
cv |
|- a |
15 |
14 5
|
cfv |
|- ( f ` a ) |
16 |
|
cds |
|- dist |
17 |
9 16
|
cfv |
|- ( dist ` h ) |
18 |
13
|
cv |
|- b |
19 |
18 5
|
cfv |
|- ( f ` b ) |
20 |
15 19 17
|
co |
|- ( ( f ` a ) ( dist ` h ) ( f ` b ) ) |
21 |
7 16
|
cfv |
|- ( dist ` g ) |
22 |
14 18 21
|
co |
|- ( a ( dist ` g ) b ) |
23 |
20 22
|
wceq |
|- ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) |
24 |
23 13 8
|
wral |
|- A. b e. ( Base ` g ) ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) |
25 |
24 12 8
|
wral |
|- A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) |
26 |
11 25
|
wa |
|- ( f : ( Base ` g ) -1-1-onto-> ( Base ` h ) /\ A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) ) |
27 |
26 4
|
cab |
|- { f | ( f : ( Base ` g ) -1-1-onto-> ( Base ` h ) /\ A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) ) } |
28 |
1 3 2 2 27
|
cmpo |
|- ( g e. _V , h e. _V |-> { f | ( f : ( Base ` g ) -1-1-onto-> ( Base ` h ) /\ A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) ) } ) |
29 |
0 28
|
wceq |
|- Ismt = ( g e. _V , h e. _V |-> { f | ( f : ( Base ` g ) -1-1-onto-> ( Base ` h ) /\ A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) ) } ) |