| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cismt |  |-  Ismt | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vh |  |-  h | 
						
							| 4 |  | vf |  |-  f | 
						
							| 5 | 4 | cv |  |-  f | 
						
							| 6 |  | cbs |  |-  Base | 
						
							| 7 | 1 | cv |  |-  g | 
						
							| 8 | 7 6 | cfv |  |-  ( Base ` g ) | 
						
							| 9 | 3 | cv |  |-  h | 
						
							| 10 | 9 6 | cfv |  |-  ( Base ` h ) | 
						
							| 11 | 8 10 5 | wf1o |  |-  f : ( Base ` g ) -1-1-onto-> ( Base ` h ) | 
						
							| 12 |  | va |  |-  a | 
						
							| 13 |  | vb |  |-  b | 
						
							| 14 | 12 | cv |  |-  a | 
						
							| 15 | 14 5 | cfv |  |-  ( f ` a ) | 
						
							| 16 |  | cds |  |-  dist | 
						
							| 17 | 9 16 | cfv |  |-  ( dist ` h ) | 
						
							| 18 | 13 | cv |  |-  b | 
						
							| 19 | 18 5 | cfv |  |-  ( f ` b ) | 
						
							| 20 | 15 19 17 | co |  |-  ( ( f ` a ) ( dist ` h ) ( f ` b ) ) | 
						
							| 21 | 7 16 | cfv |  |-  ( dist ` g ) | 
						
							| 22 | 14 18 21 | co |  |-  ( a ( dist ` g ) b ) | 
						
							| 23 | 20 22 | wceq |  |-  ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) | 
						
							| 24 | 23 13 8 | wral |  |-  A. b e. ( Base ` g ) ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) | 
						
							| 25 | 24 12 8 | wral |  |-  A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) | 
						
							| 26 | 11 25 | wa |  |-  ( f : ( Base ` g ) -1-1-onto-> ( Base ` h ) /\ A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) ) | 
						
							| 27 | 26 4 | cab |  |-  { f | ( f : ( Base ` g ) -1-1-onto-> ( Base ` h ) /\ A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) ) } | 
						
							| 28 | 1 3 2 2 27 | cmpo |  |-  ( g e. _V , h e. _V |-> { f | ( f : ( Base ` g ) -1-1-onto-> ( Base ` h ) /\ A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) ) } ) | 
						
							| 29 | 0 28 | wceq |  |-  Ismt = ( g e. _V , h e. _V |-> { f | ( f : ( Base ` g ) -1-1-onto-> ( Base ` h ) /\ A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( ( f ` a ) ( dist ` h ) ( f ` b ) ) = ( a ( dist ` g ) b ) ) } ) |