Step |
Hyp |
Ref |
Expression |
0 |
|
cismt |
⊢ Ismt |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
vh |
⊢ ℎ |
4 |
|
vf |
⊢ 𝑓 |
5 |
4
|
cv |
⊢ 𝑓 |
6 |
|
cbs |
⊢ Base |
7 |
1
|
cv |
⊢ 𝑔 |
8 |
7 6
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
9 |
3
|
cv |
⊢ ℎ |
10 |
9 6
|
cfv |
⊢ ( Base ‘ ℎ ) |
11 |
8 10 5
|
wf1o |
⊢ 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ ) |
12 |
|
va |
⊢ 𝑎 |
13 |
|
vb |
⊢ 𝑏 |
14 |
12
|
cv |
⊢ 𝑎 |
15 |
14 5
|
cfv |
⊢ ( 𝑓 ‘ 𝑎 ) |
16 |
|
cds |
⊢ dist |
17 |
9 16
|
cfv |
⊢ ( dist ‘ ℎ ) |
18 |
13
|
cv |
⊢ 𝑏 |
19 |
18 5
|
cfv |
⊢ ( 𝑓 ‘ 𝑏 ) |
20 |
15 19 17
|
co |
⊢ ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) |
21 |
7 16
|
cfv |
⊢ ( dist ‘ 𝑔 ) |
22 |
14 18 21
|
co |
⊢ ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) |
23 |
20 22
|
wceq |
⊢ ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) |
24 |
23 13 8
|
wral |
⊢ ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) |
25 |
24 12 8
|
wral |
⊢ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) |
26 |
11 25
|
wa |
⊢ ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) |
27 |
26 4
|
cab |
⊢ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) } |
28 |
1 3 2 2 27
|
cmpo |
⊢ ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) } ) |
29 |
0 28
|
wceq |
⊢ Ismt = ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) } ) |