Metamath Proof Explorer


Definition df-ismt

Description: Define the set of isometries between two structures. Definition 4.8 of Schwabhauser p. 36. See isismt . (Contributed by Thierry Arnoux, 13-Dec-2019)

Ref Expression
Assertion df-ismt Ismt = ( 𝑔 ∈ V , ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓𝑎 ) ( dist ‘ ) ( 𝑓𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cismt Ismt
1 vg 𝑔
2 cvv V
3 vh
4 vf 𝑓
5 4 cv 𝑓
6 cbs Base
7 1 cv 𝑔
8 7 6 cfv ( Base ‘ 𝑔 )
9 3 cv
10 9 6 cfv ( Base ‘ )
11 8 10 5 wf1o 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ )
12 va 𝑎
13 vb 𝑏
14 12 cv 𝑎
15 14 5 cfv ( 𝑓𝑎 )
16 cds dist
17 9 16 cfv ( dist ‘ )
18 13 cv 𝑏
19 18 5 cfv ( 𝑓𝑏 )
20 15 19 17 co ( ( 𝑓𝑎 ) ( dist ‘ ) ( 𝑓𝑏 ) )
21 7 16 cfv ( dist ‘ 𝑔 )
22 14 18 21 co ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 )
23 20 22 wceq ( ( 𝑓𝑎 ) ( dist ‘ ) ( 𝑓𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 )
24 23 13 8 wral 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓𝑎 ) ( dist ‘ ) ( 𝑓𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 )
25 24 12 8 wral 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓𝑎 ) ( dist ‘ ) ( 𝑓𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 )
26 11 25 wa ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓𝑎 ) ( dist ‘ ) ( 𝑓𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) )
27 26 4 cab { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓𝑎 ) ( dist ‘ ) ( 𝑓𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) }
28 1 3 2 2 27 cmpo ( 𝑔 ∈ V , ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓𝑎 ) ( dist ‘ ) ( 𝑓𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) } )
29 0 28 wceq Ismt = ( 𝑔 ∈ V , ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓𝑎 ) ( dist ‘ ) ( 𝑓𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) } )