| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cismt | ⊢ Ismt | 
						
							| 1 |  | vg | ⊢ 𝑔 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vh | ⊢ ℎ | 
						
							| 4 |  | vf | ⊢ 𝑓 | 
						
							| 5 | 4 | cv | ⊢ 𝑓 | 
						
							| 6 |  | cbs | ⊢ Base | 
						
							| 7 | 1 | cv | ⊢ 𝑔 | 
						
							| 8 | 7 6 | cfv | ⊢ ( Base ‘ 𝑔 ) | 
						
							| 9 | 3 | cv | ⊢ ℎ | 
						
							| 10 | 9 6 | cfv | ⊢ ( Base ‘ ℎ ) | 
						
							| 11 | 8 10 5 | wf1o | ⊢ 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ ) | 
						
							| 12 |  | va | ⊢ 𝑎 | 
						
							| 13 |  | vb | ⊢ 𝑏 | 
						
							| 14 | 12 | cv | ⊢ 𝑎 | 
						
							| 15 | 14 5 | cfv | ⊢ ( 𝑓 ‘ 𝑎 ) | 
						
							| 16 |  | cds | ⊢ dist | 
						
							| 17 | 9 16 | cfv | ⊢ ( dist ‘ ℎ ) | 
						
							| 18 | 13 | cv | ⊢ 𝑏 | 
						
							| 19 | 18 5 | cfv | ⊢ ( 𝑓 ‘ 𝑏 ) | 
						
							| 20 | 15 19 17 | co | ⊢ ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) | 
						
							| 21 | 7 16 | cfv | ⊢ ( dist ‘ 𝑔 ) | 
						
							| 22 | 14 18 21 | co | ⊢ ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) | 
						
							| 23 | 20 22 | wceq | ⊢ ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) | 
						
							| 24 | 23 13 8 | wral | ⊢ ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) | 
						
							| 25 | 24 12 8 | wral | ⊢ ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) | 
						
							| 26 | 11 25 | wa | ⊢ ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) | 
						
							| 27 | 26 4 | cab | ⊢ { 𝑓  ∣  ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) } | 
						
							| 28 | 1 3 2 2 27 | cmpo | ⊢ ( 𝑔  ∈  V ,  ℎ  ∈  V  ↦  { 𝑓  ∣  ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) } ) | 
						
							| 29 | 0 28 | wceq | ⊢ Ismt  =  ( 𝑔  ∈  V ,  ℎ  ∈  V  ↦  { 𝑓  ∣  ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) } ) |