| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isismt.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | isismt.p | ⊢ 𝑃  =  ( Base ‘ 𝐻 ) | 
						
							| 3 |  | isismt.d | ⊢ 𝐷  =  ( dist ‘ 𝐺 ) | 
						
							| 4 |  | isismt.m | ⊢  −   =  ( dist ‘ 𝐻 ) | 
						
							| 5 |  | elex | ⊢ ( 𝐺  ∈  𝑉  →  𝐺  ∈  V ) | 
						
							| 6 |  | elex | ⊢ ( 𝐻  ∈  𝑊  →  𝐻  ∈  V ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 8 | 7 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  𝐵 ) | 
						
							| 9 | 8 | f1oeq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ )  ↔  𝑓 : 𝐵 –1-1-onto→ ( Base ‘ ℎ ) ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( dist ‘ 𝑔 )  =  ( dist ‘ 𝐺 ) ) | 
						
							| 11 | 10 3 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( dist ‘ 𝑔 )  =  𝐷 ) | 
						
							| 12 | 11 | oveqd | ⊢ ( 𝑔  =  𝐺  →  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 )  =  ( 𝑎 𝐷 𝑏 ) ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 )  ↔  ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 14 | 8 13 | raleqbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 )  ↔  ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 15 | 8 14 | raleqbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 )  ↔  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 16 | 9 15 | anbi12d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) )  ↔  ( 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ ℎ )  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) ) ) | 
						
							| 17 | 16 | abbidv | ⊢ ( 𝑔  =  𝐺  →  { 𝑓  ∣  ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) }  =  { 𝑓  ∣  ( 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ ℎ )  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) } ) | 
						
							| 18 |  | fveq2 | ⊢ ( ℎ  =  𝐻  →  ( Base ‘ ℎ )  =  ( Base ‘ 𝐻 ) ) | 
						
							| 19 | 18 2 | eqtr4di | ⊢ ( ℎ  =  𝐻  →  ( Base ‘ ℎ )  =  𝑃 ) | 
						
							| 20 | 19 | f1oeq3d | ⊢ ( ℎ  =  𝐻  →  ( 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ ℎ )  ↔  𝑓 : 𝐵 –1-1-onto→ 𝑃 ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( ℎ  =  𝐻  →  ( dist ‘ ℎ )  =  ( dist ‘ 𝐻 ) ) | 
						
							| 22 | 21 4 | eqtr4di | ⊢ ( ℎ  =  𝐻  →  ( dist ‘ ℎ )  =   −  ) | 
						
							| 23 | 22 | oveqd | ⊢ ( ℎ  =  𝐻  →  ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) ) ) | 
						
							| 24 | 23 | eqeq1d | ⊢ ( ℎ  =  𝐻  →  ( ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 )  ↔  ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 25 | 24 | 2ralbidv | ⊢ ( ℎ  =  𝐻  →  ( ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 )  ↔  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 26 | 20 25 | anbi12d | ⊢ ( ℎ  =  𝐻  →  ( ( 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ ℎ )  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) )  ↔  ( 𝑓 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) ) ) | 
						
							| 27 | 26 | abbidv | ⊢ ( ℎ  =  𝐻  →  { 𝑓  ∣  ( 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ ℎ )  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) }  =  { 𝑓  ∣  ( 𝑓 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) } ) | 
						
							| 28 |  | df-ismt | ⊢ Ismt  =  ( 𝑔  ∈  V ,  ℎ  ∈  V  ↦  { 𝑓  ∣  ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) } ) | 
						
							| 29 |  | ovex | ⊢ ( 𝑃  ↑m  𝐵 )  ∈  V | 
						
							| 30 |  | f1of | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝑃  →  𝑓 : 𝐵 ⟶ 𝑃 ) | 
						
							| 31 | 2 | fvexi | ⊢ 𝑃  ∈  V | 
						
							| 32 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 33 | 31 32 | elmap | ⊢ ( 𝑓  ∈  ( 𝑃  ↑m  𝐵 )  ↔  𝑓 : 𝐵 ⟶ 𝑃 ) | 
						
							| 34 | 30 33 | sylibr | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝑃  →  𝑓  ∈  ( 𝑃  ↑m  𝐵 ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) )  →  𝑓  ∈  ( 𝑃  ↑m  𝐵 ) ) | 
						
							| 36 | 35 | abssi | ⊢ { 𝑓  ∣  ( 𝑓 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) }  ⊆  ( 𝑃  ↑m  𝐵 ) | 
						
							| 37 | 29 36 | ssexi | ⊢ { 𝑓  ∣  ( 𝑓 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) }  ∈  V | 
						
							| 38 | 17 27 28 37 | ovmpo | ⊢ ( ( 𝐺  ∈  V  ∧  𝐻  ∈  V )  →  ( 𝐺 Ismt 𝐻 )  =  { 𝑓  ∣  ( 𝑓 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) } ) | 
						
							| 39 | 5 6 38 | syl2an | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝐻  ∈  𝑊 )  →  ( 𝐺 Ismt 𝐻 )  =  { 𝑓  ∣  ( 𝑓 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) } ) | 
						
							| 40 | 39 | eleq2d | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝐻  ∈  𝑊 )  →  ( 𝐹  ∈  ( 𝐺 Ismt 𝐻 )  ↔  𝐹  ∈  { 𝑓  ∣  ( 𝑓 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) } ) ) | 
						
							| 41 |  | f1of | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝑃  →  𝐹 : 𝐵 ⟶ 𝑃 ) | 
						
							| 42 |  | fex | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝑃  ∧  𝐵  ∈  V )  →  𝐹  ∈  V ) | 
						
							| 43 | 41 32 42 | sylancl | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝑃  →  𝐹  ∈  V ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 )  −  ( 𝐹 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) )  →  𝐹  ∈  V ) | 
						
							| 45 |  | f1oeq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 : 𝐵 –1-1-onto→ 𝑃  ↔  𝐹 : 𝐵 –1-1-onto→ 𝑃 ) ) | 
						
							| 46 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 47 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 48 | 46 47 | oveq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 )  −  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 49 | 48 | eqeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 )  ↔  ( ( 𝐹 ‘ 𝑎 )  −  ( 𝐹 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 50 | 49 | 2ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 )  ↔  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 )  −  ( 𝐹 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 51 | 45 50 | anbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) )  ↔  ( 𝐹 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 )  −  ( 𝐹 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) ) ) | 
						
							| 52 | 44 51 | elab3 | ⊢ ( 𝐹  ∈  { 𝑓  ∣  ( 𝑓 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) }  ↔  ( 𝐹 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 )  −  ( 𝐹 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 53 | 40 52 | bitrdi | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝐻  ∈  𝑊 )  →  ( 𝐹  ∈  ( 𝐺 Ismt 𝐻 )  ↔  ( 𝐹 : 𝐵 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 )  −  ( 𝐹 ‘ 𝑏 ) )  =  ( 𝑎 𝐷 𝑏 ) ) ) ) |