Metamath Proof Explorer


Theorem ismot

Description: Property of being an isometry mapping to the same space. In geometry, this is also called a motion. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p 𝑃 = ( Base ‘ 𝐺 )
ismot.m = ( dist ‘ 𝐺 )
Assertion ismot ( 𝐺𝑉 → ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝐹 : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑎 𝑏 ) ) ) )

Proof

Step Hyp Ref Expression
1 ismot.p 𝑃 = ( Base ‘ 𝐺 )
2 ismot.m = ( dist ‘ 𝐺 )
3 1 1 2 2 isismt ( ( 𝐺𝑉𝐺𝑉 ) → ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝐹 : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑎 𝑏 ) ) ) )
4 3 anidms ( 𝐺𝑉 → ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝐹 : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑎 𝑏 ) ) ) )