Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Motions
ismot
Metamath Proof Explorer
Description: Property of being an isometry mapping to the same space. In geometry,
this is also called a motion. (Contributed by Thierry Arnoux , 15-Dec-2019)
Ref
Expression
Hypotheses
ismot.p
⊢ 𝑃 = ( Base ‘ 𝐺 )
ismot.m
⊢ − = ( dist ‘ 𝐺 )
Assertion
ismot
⊢ ( 𝐺 ∈ 𝑉 → ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝐹 : 𝑃 –1-1 -onto → 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) )
Proof
Step
Hyp
Ref
Expression
1
ismot.p
⊢ 𝑃 = ( Base ‘ 𝐺 )
2
ismot.m
⊢ − = ( dist ‘ 𝐺 )
3
1 1 2 2
isismt
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝐹 : 𝑃 –1-1 -onto → 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) )
4
3
anidms
⊢ ( 𝐺 ∈ 𝑉 → ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝐹 : 𝑃 –1-1 -onto → 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) )