Metamath Proof Explorer


Theorem ismot

Description: Property of being an isometry mapping to the same space. In geometry, this is also called a motion. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P=BaseG
ismot.m -˙=distG
Assertion ismot GVFGIsmtGF:P1-1 ontoPaPbPFa-˙Fb=a-˙b

Proof

Step Hyp Ref Expression
1 ismot.p P=BaseG
2 ismot.m -˙=distG
3 1 1 2 2 isismt GVGVFGIsmtGF:P1-1 ontoPaPbPFa-˙Fb=a-˙b
4 3 anidms GVFGIsmtGF:P1-1 ontoPaPbPFa-˙Fb=a-˙b