Description: Property of being an isometry mapping to the same space. In geometry, this is also called a motion. (Contributed by Thierry Arnoux, 15-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismot.p | |- P = ( Base ` G ) |
|
ismot.m | |- .- = ( dist ` G ) |
||
Assertion | ismot | |- ( G e. V -> ( F e. ( G Ismt G ) <-> ( F : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( F ` a ) .- ( F ` b ) ) = ( a .- b ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismot.p | |- P = ( Base ` G ) |
|
2 | ismot.m | |- .- = ( dist ` G ) |
|
3 | 1 1 2 2 | isismt | |- ( ( G e. V /\ G e. V ) -> ( F e. ( G Ismt G ) <-> ( F : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( F ` a ) .- ( F ` b ) ) = ( a .- b ) ) ) ) |
4 | 3 | anidms | |- ( G e. V -> ( F e. ( G Ismt G ) <-> ( F : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( F ` a ) .- ( F ` b ) ) = ( a .- b ) ) ) ) |