Metamath Proof Explorer


Definition df-ismt

Description: Define the set of isometries between two structures. Definition 4.8 of Schwabhauser p. 36. See isismt . (Contributed by Thierry Arnoux, 13-Dec-2019)

Ref Expression
Assertion df-ismt Ismt=gV,hVf|f:Baseg1-1 ontoBasehaBasegbBasegfadisthfb=adistgb

Detailed syntax breakdown

Step Hyp Ref Expression
0 cismt classIsmt
1 vg setvarg
2 cvv classV
3 vh setvarh
4 vf setvarf
5 4 cv setvarf
6 cbs classBase
7 1 cv setvarg
8 7 6 cfv classBaseg
9 3 cv setvarh
10 9 6 cfv classBaseh
11 8 10 5 wf1o wfff:Baseg1-1 ontoBaseh
12 va setvara
13 vb setvarb
14 12 cv setvara
15 14 5 cfv classfa
16 cds classdist
17 9 16 cfv classdisth
18 13 cv setvarb
19 18 5 cfv classfb
20 15 19 17 co classfadisthfb
21 7 16 cfv classdistg
22 14 18 21 co classadistgb
23 20 22 wceq wfffadisthfb=adistgb
24 23 13 8 wral wffbBasegfadisthfb=adistgb
25 24 12 8 wral wffaBasegbBasegfadisthfb=adistgb
26 11 25 wa wfff:Baseg1-1 ontoBasehaBasegbBasegfadisthfb=adistgb
27 26 4 cab classf|f:Baseg1-1 ontoBasehaBasegbBasegfadisthfb=adistgb
28 1 3 2 2 27 cmpo classgV,hVf|f:Baseg1-1 ontoBasehaBasegbBasegfadisthfb=adistgb
29 0 28 wceq wffIsmt=gV,hVf|f:Baseg1-1 ontoBasehaBasegbBasegfadisthfb=adistgb