Metamath Proof Explorer


Theorem motcgr

Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P = Base G
ismot.m - ˙ = dist G
motgrp.1 φ G V
motcgr.a φ A P
motcgr.b φ B P
motcgr.f φ F G Ismt G
Assertion motcgr φ F A - ˙ F B = A - ˙ B

Proof

Step Hyp Ref Expression
1 ismot.p P = Base G
2 ismot.m - ˙ = dist G
3 motgrp.1 φ G V
4 motcgr.a φ A P
5 motcgr.b φ B P
6 motcgr.f φ F G Ismt G
7 1 2 ismot G V F G Ismt G F : P 1-1 onto P a P b P F a - ˙ F b = a - ˙ b
8 3 7 syl φ F G Ismt G F : P 1-1 onto P a P b P F a - ˙ F b = a - ˙ b
9 6 8 mpbid φ F : P 1-1 onto P a P b P F a - ˙ F b = a - ˙ b
10 9 simprd φ a P b P F a - ˙ F b = a - ˙ b
11 fveq2 a = A F a = F A
12 11 oveq1d a = A F a - ˙ F b = F A - ˙ F b
13 oveq1 a = A a - ˙ b = A - ˙ b
14 12 13 eqeq12d a = A F a - ˙ F b = a - ˙ b F A - ˙ F b = A - ˙ b
15 fveq2 b = B F b = F B
16 15 oveq2d b = B F A - ˙ F b = F A - ˙ F B
17 oveq2 b = B A - ˙ b = A - ˙ B
18 16 17 eqeq12d b = B F A - ˙ F b = A - ˙ b F A - ˙ F B = A - ˙ B
19 14 18 rspc2va A P B P a P b P F a - ˙ F b = a - ˙ b F A - ˙ F B = A - ˙ B
20 4 5 10 19 syl21anc φ F A - ˙ F B = A - ˙ B