Metamath Proof Explorer


Theorem motcgr

Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p 𝑃 = ( Base ‘ 𝐺 )
ismot.m = ( dist ‘ 𝐺 )
motgrp.1 ( 𝜑𝐺𝑉 )
motcgr.a ( 𝜑𝐴𝑃 )
motcgr.b ( 𝜑𝐵𝑃 )
motcgr.f ( 𝜑𝐹 ∈ ( 𝐺 Ismt 𝐺 ) )
Assertion motcgr ( 𝜑 → ( ( 𝐹𝐴 ) ( 𝐹𝐵 ) ) = ( 𝐴 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ismot.p 𝑃 = ( Base ‘ 𝐺 )
2 ismot.m = ( dist ‘ 𝐺 )
3 motgrp.1 ( 𝜑𝐺𝑉 )
4 motcgr.a ( 𝜑𝐴𝑃 )
5 motcgr.b ( 𝜑𝐵𝑃 )
6 motcgr.f ( 𝜑𝐹 ∈ ( 𝐺 Ismt 𝐺 ) )
7 1 2 ismot ( 𝐺𝑉 → ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝐹 : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑎 𝑏 ) ) ) )
8 3 7 syl ( 𝜑 → ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝐹 : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑎 𝑏 ) ) ) )
9 6 8 mpbid ( 𝜑 → ( 𝐹 : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑎 𝑏 ) ) )
10 9 simprd ( 𝜑 → ∀ 𝑎𝑃𝑏𝑃 ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑎 𝑏 ) )
11 fveq2 ( 𝑎 = 𝐴 → ( 𝐹𝑎 ) = ( 𝐹𝐴 ) )
12 11 oveq1d ( 𝑎 = 𝐴 → ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝑏 ) ) )
13 oveq1 ( 𝑎 = 𝐴 → ( 𝑎 𝑏 ) = ( 𝐴 𝑏 ) )
14 12 13 eqeq12d ( 𝑎 = 𝐴 → ( ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑎 𝑏 ) ↔ ( ( 𝐹𝐴 ) ( 𝐹𝑏 ) ) = ( 𝐴 𝑏 ) ) )
15 fveq2 ( 𝑏 = 𝐵 → ( 𝐹𝑏 ) = ( 𝐹𝐵 ) )
16 15 oveq2d ( 𝑏 = 𝐵 → ( ( 𝐹𝐴 ) ( 𝐹𝑏 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝐵 ) ) )
17 oveq2 ( 𝑏 = 𝐵 → ( 𝐴 𝑏 ) = ( 𝐴 𝐵 ) )
18 16 17 eqeq12d ( 𝑏 = 𝐵 → ( ( ( 𝐹𝐴 ) ( 𝐹𝑏 ) ) = ( 𝐴 𝑏 ) ↔ ( ( 𝐹𝐴 ) ( 𝐹𝐵 ) ) = ( 𝐴 𝐵 ) ) )
19 14 18 rspc2va ( ( ( 𝐴𝑃𝐵𝑃 ) ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑎 𝑏 ) ) → ( ( 𝐹𝐴 ) ( 𝐹𝐵 ) ) = ( 𝐴 𝐵 ) )
20 4 5 10 19 syl21anc ( 𝜑 → ( ( 𝐹𝐴 ) ( 𝐹𝐵 ) ) = ( 𝐴 𝐵 ) )