| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cismty |
|- Ismty |
| 1 |
|
vm |
|- m |
| 2 |
|
cxmet |
|- *Met |
| 3 |
2
|
crn |
|- ran *Met |
| 4 |
3
|
cuni |
|- U. ran *Met |
| 5 |
|
vn |
|- n |
| 6 |
|
vf |
|- f |
| 7 |
6
|
cv |
|- f |
| 8 |
1
|
cv |
|- m |
| 9 |
8
|
cdm |
|- dom m |
| 10 |
9
|
cdm |
|- dom dom m |
| 11 |
5
|
cv |
|- n |
| 12 |
11
|
cdm |
|- dom n |
| 13 |
12
|
cdm |
|- dom dom n |
| 14 |
10 13 7
|
wf1o |
|- f : dom dom m -1-1-onto-> dom dom n |
| 15 |
|
vx |
|- x |
| 16 |
|
vy |
|- y |
| 17 |
15
|
cv |
|- x |
| 18 |
16
|
cv |
|- y |
| 19 |
17 18 8
|
co |
|- ( x m y ) |
| 20 |
17 7
|
cfv |
|- ( f ` x ) |
| 21 |
18 7
|
cfv |
|- ( f ` y ) |
| 22 |
20 21 11
|
co |
|- ( ( f ` x ) n ( f ` y ) ) |
| 23 |
19 22
|
wceq |
|- ( x m y ) = ( ( f ` x ) n ( f ` y ) ) |
| 24 |
23 16 10
|
wral |
|- A. y e. dom dom m ( x m y ) = ( ( f ` x ) n ( f ` y ) ) |
| 25 |
24 15 10
|
wral |
|- A. x e. dom dom m A. y e. dom dom m ( x m y ) = ( ( f ` x ) n ( f ` y ) ) |
| 26 |
14 25
|
wa |
|- ( f : dom dom m -1-1-onto-> dom dom n /\ A. x e. dom dom m A. y e. dom dom m ( x m y ) = ( ( f ` x ) n ( f ` y ) ) ) |
| 27 |
26 6
|
cab |
|- { f | ( f : dom dom m -1-1-onto-> dom dom n /\ A. x e. dom dom m A. y e. dom dom m ( x m y ) = ( ( f ` x ) n ( f ` y ) ) ) } |
| 28 |
1 5 4 4 27
|
cmpo |
|- ( m e. U. ran *Met , n e. U. ran *Met |-> { f | ( f : dom dom m -1-1-onto-> dom dom n /\ A. x e. dom dom m A. y e. dom dom m ( x m y ) = ( ( f ` x ) n ( f ` y ) ) ) } ) |
| 29 |
0 28
|
wceq |
|- Ismty = ( m e. U. ran *Met , n e. U. ran *Met |-> { f | ( f : dom dom m -1-1-onto-> dom dom n /\ A. x e. dom dom m A. y e. dom dom m ( x m y ) = ( ( f ` x ) n ( f ` y ) ) ) } ) |