| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cismty |
⊢ Ismty |
| 1 |
|
vm |
⊢ 𝑚 |
| 2 |
|
cxmet |
⊢ ∞Met |
| 3 |
2
|
crn |
⊢ ran ∞Met |
| 4 |
3
|
cuni |
⊢ ∪ ran ∞Met |
| 5 |
|
vn |
⊢ 𝑛 |
| 6 |
|
vf |
⊢ 𝑓 |
| 7 |
6
|
cv |
⊢ 𝑓 |
| 8 |
1
|
cv |
⊢ 𝑚 |
| 9 |
8
|
cdm |
⊢ dom 𝑚 |
| 10 |
9
|
cdm |
⊢ dom dom 𝑚 |
| 11 |
5
|
cv |
⊢ 𝑛 |
| 12 |
11
|
cdm |
⊢ dom 𝑛 |
| 13 |
12
|
cdm |
⊢ dom dom 𝑛 |
| 14 |
10 13 7
|
wf1o |
⊢ 𝑓 : dom dom 𝑚 –1-1-onto→ dom dom 𝑛 |
| 15 |
|
vx |
⊢ 𝑥 |
| 16 |
|
vy |
⊢ 𝑦 |
| 17 |
15
|
cv |
⊢ 𝑥 |
| 18 |
16
|
cv |
⊢ 𝑦 |
| 19 |
17 18 8
|
co |
⊢ ( 𝑥 𝑚 𝑦 ) |
| 20 |
17 7
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
| 21 |
18 7
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
| 22 |
20 21 11
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) |
| 23 |
19 22
|
wceq |
⊢ ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) |
| 24 |
23 16 10
|
wral |
⊢ ∀ 𝑦 ∈ dom dom 𝑚 ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) |
| 25 |
24 15 10
|
wral |
⊢ ∀ 𝑥 ∈ dom dom 𝑚 ∀ 𝑦 ∈ dom dom 𝑚 ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) |
| 26 |
14 25
|
wa |
⊢ ( 𝑓 : dom dom 𝑚 –1-1-onto→ dom dom 𝑛 ∧ ∀ 𝑥 ∈ dom dom 𝑚 ∀ 𝑦 ∈ dom dom 𝑚 ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) ) |
| 27 |
26 6
|
cab |
⊢ { 𝑓 ∣ ( 𝑓 : dom dom 𝑚 –1-1-onto→ dom dom 𝑛 ∧ ∀ 𝑥 ∈ dom dom 𝑚 ∀ 𝑦 ∈ dom dom 𝑚 ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) ) } |
| 28 |
1 5 4 4 27
|
cmpo |
⊢ ( 𝑚 ∈ ∪ ran ∞Met , 𝑛 ∈ ∪ ran ∞Met ↦ { 𝑓 ∣ ( 𝑓 : dom dom 𝑚 –1-1-onto→ dom dom 𝑛 ∧ ∀ 𝑥 ∈ dom dom 𝑚 ∀ 𝑦 ∈ dom dom 𝑚 ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 29 |
0 28
|
wceq |
⊢ Ismty = ( 𝑚 ∈ ∪ ran ∞Met , 𝑛 ∈ ∪ ran ∞Met ↦ { 𝑓 ∣ ( 𝑓 : dom dom 𝑚 –1-1-onto→ dom dom 𝑛 ∧ ∀ 𝑥 ∈ dom dom 𝑚 ∀ 𝑦 ∈ dom dom 𝑚 ( 𝑥 𝑚 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) 𝑛 ( 𝑓 ‘ 𝑦 ) ) ) } ) |