Step |
Hyp |
Ref |
Expression |
1 |
|
df-ismty |
β’ Ismty = ( π β βͺ ran βMet , π β βͺ ran βMet β¦ { π β£ ( π : dom dom π β1-1-ontoβ dom dom π β§ β π₯ β dom dom π β π¦ β dom dom π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) } ) |
2 |
1
|
a1i |
β’ ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β Ismty = ( π β βͺ ran βMet , π β βͺ ran βMet β¦ { π β£ ( π : dom dom π β1-1-ontoβ dom dom π β§ β π₯ β dom dom π β π¦ β dom dom π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) } ) ) |
3 |
|
dmeq |
β’ ( π = π β dom π = dom π ) |
4 |
|
xmetf |
β’ ( π β ( βMet β π ) β π : ( π Γ π ) βΆ β* ) |
5 |
4
|
fdmd |
β’ ( π β ( βMet β π ) β dom π = ( π Γ π ) ) |
6 |
3 5
|
sylan9eqr |
β’ ( ( π β ( βMet β π ) β§ π = π ) β dom π = ( π Γ π ) ) |
7 |
6
|
ad2ant2r |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β dom π = ( π Γ π ) ) |
8 |
7
|
dmeqd |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β dom dom π = dom ( π Γ π ) ) |
9 |
|
dmxpid |
β’ dom ( π Γ π ) = π |
10 |
8 9
|
eqtrdi |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β dom dom π = π ) |
11 |
10
|
f1oeq2d |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β ( π : dom dom π β1-1-ontoβ dom dom π β π : π β1-1-ontoβ dom dom π ) ) |
12 |
|
dmeq |
β’ ( π = π β dom π = dom π ) |
13 |
|
xmetf |
β’ ( π β ( βMet β π ) β π : ( π Γ π ) βΆ β* ) |
14 |
13
|
fdmd |
β’ ( π β ( βMet β π ) β dom π = ( π Γ π ) ) |
15 |
12 14
|
sylan9eqr |
β’ ( ( π β ( βMet β π ) β§ π = π ) β dom π = ( π Γ π ) ) |
16 |
15
|
ad2ant2l |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β dom π = ( π Γ π ) ) |
17 |
16
|
dmeqd |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β dom dom π = dom ( π Γ π ) ) |
18 |
|
dmxpid |
β’ dom ( π Γ π ) = π |
19 |
17 18
|
eqtrdi |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β dom dom π = π ) |
20 |
|
f1oeq3 |
β’ ( dom dom π = π β ( π : π β1-1-ontoβ dom dom π β π : π β1-1-ontoβ π ) ) |
21 |
19 20
|
syl |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β ( π : π β1-1-ontoβ dom dom π β π : π β1-1-ontoβ π ) ) |
22 |
11 21
|
bitrd |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β ( π : dom dom π β1-1-ontoβ dom dom π β π : π β1-1-ontoβ π ) ) |
23 |
|
oveq |
β’ ( π = π β ( π₯ π π¦ ) = ( π₯ π π¦ ) ) |
24 |
|
oveq |
β’ ( π = π β ( ( π β π₯ ) π ( π β π¦ ) ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) |
25 |
23 24
|
eqeqan12d |
β’ ( ( π = π β§ π = π ) β ( ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) β ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) ) |
26 |
25
|
adantl |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β ( ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) β ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) ) |
27 |
10 26
|
raleqbidv |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β ( β π¦ β dom dom π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) β β π¦ β π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) ) |
28 |
10 27
|
raleqbidv |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β ( β π₯ β dom dom π β π¦ β dom dom π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) β β π₯ β π β π¦ β π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) ) |
29 |
22 28
|
anbi12d |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β ( ( π : dom dom π β1-1-ontoβ dom dom π β§ β π₯ β dom dom π β π¦ β dom dom π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) β ( π : π β1-1-ontoβ π β§ β π₯ β π β π¦ β π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) ) ) |
30 |
29
|
abbidv |
β’ ( ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β§ ( π = π β§ π = π ) ) β { π β£ ( π : dom dom π β1-1-ontoβ dom dom π β§ β π₯ β dom dom π β π¦ β dom dom π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) } = { π β£ ( π : π β1-1-ontoβ π β§ β π₯ β π β π¦ β π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) } ) |
31 |
|
fvssunirn |
β’ ( βMet β π ) β βͺ ran βMet |
32 |
|
simpl |
β’ ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β π β ( βMet β π ) ) |
33 |
31 32
|
sselid |
β’ ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β π β βͺ ran βMet ) |
34 |
|
fvssunirn |
β’ ( βMet β π ) β βͺ ran βMet |
35 |
|
simpr |
β’ ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β π β ( βMet β π ) ) |
36 |
34 35
|
sselid |
β’ ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β π β βͺ ran βMet ) |
37 |
|
f1of |
β’ ( π : π β1-1-ontoβ π β π : π βΆ π ) |
38 |
37
|
adantr |
β’ ( ( π : π β1-1-ontoβ π β§ β π₯ β π β π¦ β π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) β π : π βΆ π ) |
39 |
|
elfvdm |
β’ ( π β ( βMet β π ) β π β dom βMet ) |
40 |
|
elfvdm |
β’ ( π β ( βMet β π ) β π β dom βMet ) |
41 |
|
elmapg |
β’ ( ( π β dom βMet β§ π β dom βMet ) β ( π β ( π βm π ) β π : π βΆ π ) ) |
42 |
39 40 41
|
syl2anr |
β’ ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β ( π β ( π βm π ) β π : π βΆ π ) ) |
43 |
38 42
|
imbitrrid |
β’ ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β ( ( π : π β1-1-ontoβ π β§ β π₯ β π β π¦ β π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) β π β ( π βm π ) ) ) |
44 |
43
|
abssdv |
β’ ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β { π β£ ( π : π β1-1-ontoβ π β§ β π₯ β π β π¦ β π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) } β ( π βm π ) ) |
45 |
|
ovex |
β’ ( π βm π ) β V |
46 |
45
|
ssex |
β’ ( { π β£ ( π : π β1-1-ontoβ π β§ β π₯ β π β π¦ β π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) } β ( π βm π ) β { π β£ ( π : π β1-1-ontoβ π β§ β π₯ β π β π¦ β π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) } β V ) |
47 |
44 46
|
syl |
β’ ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β { π β£ ( π : π β1-1-ontoβ π β§ β π₯ β π β π¦ β π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) } β V ) |
48 |
2 30 33 36 47
|
ovmpod |
β’ ( ( π β ( βMet β π ) β§ π β ( βMet β π ) ) β ( π Ismty π ) = { π β£ ( π : π β1-1-ontoβ π β§ β π₯ β π β π¦ β π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) } ) |