Step |
Hyp |
Ref |
Expression |
0 |
|
citco |
|- IterComp |
1 |
|
vf |
|- f |
2 |
|
cvv |
|- _V |
3 |
|
cc0 |
|- 0 |
4 |
|
vg |
|- g |
5 |
|
vj |
|- j |
6 |
1
|
cv |
|- f |
7 |
4
|
cv |
|- g |
8 |
6 7
|
ccom |
|- ( f o. g ) |
9 |
4 5 2 2 8
|
cmpo |
|- ( g e. _V , j e. _V |-> ( f o. g ) ) |
10 |
|
vi |
|- i |
11 |
|
cn0 |
|- NN0 |
12 |
10
|
cv |
|- i |
13 |
12 3
|
wceq |
|- i = 0 |
14 |
|
cid |
|- _I |
15 |
6
|
cdm |
|- dom f |
16 |
14 15
|
cres |
|- ( _I |` dom f ) |
17 |
13 16 6
|
cif |
|- if ( i = 0 , ( _I |` dom f ) , f ) |
18 |
10 11 17
|
cmpt |
|- ( i e. NN0 |-> if ( i = 0 , ( _I |` dom f ) , f ) ) |
19 |
9 18 3
|
cseq |
|- seq 0 ( ( g e. _V , j e. _V |-> ( f o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom f ) , f ) ) ) |
20 |
1 2 19
|
cmpt |
|- ( f e. _V |-> seq 0 ( ( g e. _V , j e. _V |-> ( f o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom f ) , f ) ) ) ) |
21 |
0 20
|
wceq |
|- IterComp = ( f e. _V |-> seq 0 ( ( g e. _V , j e. _V |-> ( f o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom f ) , f ) ) ) ) |