Step |
Hyp |
Ref |
Expression |
0 |
|
citco |
⊢ IterComp |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cvv |
⊢ V |
3 |
|
cc0 |
⊢ 0 |
4 |
|
vg |
⊢ 𝑔 |
5 |
|
vj |
⊢ 𝑗 |
6 |
1
|
cv |
⊢ 𝑓 |
7 |
4
|
cv |
⊢ 𝑔 |
8 |
6 7
|
ccom |
⊢ ( 𝑓 ∘ 𝑔 ) |
9 |
4 5 2 2 8
|
cmpo |
⊢ ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) |
10 |
|
vi |
⊢ 𝑖 |
11 |
|
cn0 |
⊢ ℕ0 |
12 |
10
|
cv |
⊢ 𝑖 |
13 |
12 3
|
wceq |
⊢ 𝑖 = 0 |
14 |
|
cid |
⊢ I |
15 |
6
|
cdm |
⊢ dom 𝑓 |
16 |
14 15
|
cres |
⊢ ( I ↾ dom 𝑓 ) |
17 |
13 16 6
|
cif |
⊢ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) |
18 |
10 11 17
|
cmpt |
⊢ ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) |
19 |
9 18 3
|
cseq |
⊢ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) |
20 |
1 2 19
|
cmpt |
⊢ ( 𝑓 ∈ V ↦ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) ) |
21 |
0 20
|
wceq |
⊢ IterComp = ( 𝑓 ∈ V ↦ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) ) |