Metamath Proof Explorer


Definition df-itco

Description: Define a function (recursively) that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by Thierry Arnoux, 28-Apr-2024) (Revised by AV, 2-May-2024)

Ref Expression
Assertion df-itco IterComp = ( 𝑓 ∈ V ↦ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 citco IterComp
1 vf 𝑓
2 cvv V
3 cc0 0
4 vg 𝑔
5 vj 𝑗
6 1 cv 𝑓
7 4 cv 𝑔
8 6 7 ccom ( 𝑓𝑔 )
9 4 5 2 2 8 cmpo ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓𝑔 ) )
10 vi 𝑖
11 cn0 0
12 10 cv 𝑖
13 12 3 wceq 𝑖 = 0
14 cid I
15 6 cdm dom 𝑓
16 14 15 cres ( I ↾ dom 𝑓 )
17 13 16 6 cif if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 )
18 10 11 17 cmpt ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) )
19 9 18 3 cseq seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) )
20 1 2 19 cmpt ( 𝑓 ∈ V ↦ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) )
21 0 20 wceq IterComp = ( 𝑓 ∈ V ↦ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) )