Description: Define the lower bound relationship functor. See brlb for value. (Contributed by Scott Fenton, 3-May-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | df-lb | |- LB R = UB `' R |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cR | |- R |
|
1 | 0 | clb | |- LB R |
2 | 0 | ccnv | |- `' R |
3 | 2 | cub | |- UB `' R |
4 | 1 3 | wceq | |- LB R = UB `' R |