Description: Definition of a Lindelöf space. A Lindelöf space is a topological space in which every open cover has a countable subcover. Definition 1 of BourbakiTop2 p. 195. (Contributed by Thierry Arnoux, 30-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ldlf | |- Ldlf = CovHasRef { x | x ~<_ _om } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cldlf | |- Ldlf |
|
| 1 | vx | |- x |
|
| 2 | 1 | cv | |- x |
| 3 | cdom | |- ~<_ |
|
| 4 | com | |- _om |
|
| 5 | 2 4 3 | wbr | |- x ~<_ _om |
| 6 | 5 1 | cab | |- { x | x ~<_ _om } |
| 7 | 6 | ccref | |- CovHasRef { x | x ~<_ _om } |
| 8 | 0 7 | wceq | |- Ldlf = CovHasRef { x | x ~<_ _om } |