Metamath Proof Explorer


Theorem ldlfcntref

Description: Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020)

Ref Expression
Hypothesis ldlfcntref.x
|- X = U. J
Assertion ldlfcntref
|- ( ( J e. Ldlf /\ U C_ J /\ X = U. U ) -> E. v e. ~P J ( v ~<_ _om /\ v Ref U ) )

Proof

Step Hyp Ref Expression
1 ldlfcntref.x
 |-  X = U. J
2 df-ldlf
 |-  Ldlf = CovHasRef { x | x ~<_ _om }
3 vex
 |-  v e. _V
4 breq1
 |-  ( x = v -> ( x ~<_ _om <-> v ~<_ _om ) )
5 3 4 elab
 |-  ( v e. { x | x ~<_ _om } <-> v ~<_ _om )
6 5 biimpi
 |-  ( v e. { x | x ~<_ _om } -> v ~<_ _om )
7 1 2 6 crefdf
 |-  ( ( J e. Ldlf /\ U C_ J /\ X = U. U ) -> E. v e. ~P J ( v ~<_ _om /\ v Ref U ) )