Description: Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ldlfcntref.x | |- X = U. J |
|
| Assertion | ldlfcntref | |- ( ( J e. Ldlf /\ U C_ J /\ X = U. U ) -> E. v e. ~P J ( v ~<_ _om /\ v Ref U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldlfcntref.x | |- X = U. J |
|
| 2 | df-ldlf | |- Ldlf = CovHasRef { x | x ~<_ _om } |
|
| 3 | vex | |- v e. _V |
|
| 4 | breq1 | |- ( x = v -> ( x ~<_ _om <-> v ~<_ _om ) ) |
|
| 5 | 3 4 | elab | |- ( v e. { x | x ~<_ _om } <-> v ~<_ _om ) |
| 6 | 5 | biimpi | |- ( v e. { x | x ~<_ _om } -> v ~<_ _om ) |
| 7 | 1 2 6 | crefdf | |- ( ( J e. Ldlf /\ U C_ J /\ X = U. U ) -> E. v e. ~P J ( v ~<_ _om /\ v Ref U ) ) |