Step |
Hyp |
Ref |
Expression |
1 |
|
crefi.x |
|- X = U. J |
2 |
|
crefdf.b |
|- B = CovHasRef A |
3 |
|
crefdf.p |
|- ( z e. A -> ph ) |
4 |
2
|
eleq2i |
|- ( J e. B <-> J e. CovHasRef A ) |
5 |
1
|
crefi |
|- ( ( J e. CovHasRef A /\ C C_ J /\ X = U. C ) -> E. z e. ( ~P J i^i A ) z Ref C ) |
6 |
4 5
|
syl3an1b |
|- ( ( J e. B /\ C C_ J /\ X = U. C ) -> E. z e. ( ~P J i^i A ) z Ref C ) |
7 |
|
elin |
|- ( z e. ( ~P J i^i A ) <-> ( z e. ~P J /\ z e. A ) ) |
8 |
3
|
anim2i |
|- ( ( z e. ~P J /\ z e. A ) -> ( z e. ~P J /\ ph ) ) |
9 |
7 8
|
sylbi |
|- ( z e. ( ~P J i^i A ) -> ( z e. ~P J /\ ph ) ) |
10 |
9
|
anim1i |
|- ( ( z e. ( ~P J i^i A ) /\ z Ref C ) -> ( ( z e. ~P J /\ ph ) /\ z Ref C ) ) |
11 |
|
anass |
|- ( ( ( z e. ~P J /\ ph ) /\ z Ref C ) <-> ( z e. ~P J /\ ( ph /\ z Ref C ) ) ) |
12 |
10 11
|
sylib |
|- ( ( z e. ( ~P J i^i A ) /\ z Ref C ) -> ( z e. ~P J /\ ( ph /\ z Ref C ) ) ) |
13 |
12
|
reximi2 |
|- ( E. z e. ( ~P J i^i A ) z Ref C -> E. z e. ~P J ( ph /\ z Ref C ) ) |
14 |
6 13
|
syl |
|- ( ( J e. B /\ C C_ J /\ X = U. C ) -> E. z e. ~P J ( ph /\ z Ref C ) ) |