Step |
Hyp |
Ref |
Expression |
1 |
|
crefi.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
crefdf.b |
⊢ 𝐵 = CovHasRef 𝐴 |
3 |
|
crefdf.p |
⊢ ( 𝑧 ∈ 𝐴 → 𝜑 ) |
4 |
2
|
eleq2i |
⊢ ( 𝐽 ∈ 𝐵 ↔ 𝐽 ∈ CovHasRef 𝐴 ) |
5 |
1
|
crefi |
⊢ ( ( 𝐽 ∈ CovHasRef 𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶 ) → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) 𝑧 Ref 𝐶 ) |
6 |
4 5
|
syl3an1b |
⊢ ( ( 𝐽 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶 ) → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) 𝑧 Ref 𝐶 ) |
7 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) ↔ ( 𝑧 ∈ 𝒫 𝐽 ∧ 𝑧 ∈ 𝐴 ) ) |
8 |
3
|
anim2i |
⊢ ( ( 𝑧 ∈ 𝒫 𝐽 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ 𝒫 𝐽 ∧ 𝜑 ) ) |
9 |
7 8
|
sylbi |
⊢ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) → ( 𝑧 ∈ 𝒫 𝐽 ∧ 𝜑 ) ) |
10 |
9
|
anim1i |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) ∧ 𝑧 Ref 𝐶 ) → ( ( 𝑧 ∈ 𝒫 𝐽 ∧ 𝜑 ) ∧ 𝑧 Ref 𝐶 ) ) |
11 |
|
anass |
⊢ ( ( ( 𝑧 ∈ 𝒫 𝐽 ∧ 𝜑 ) ∧ 𝑧 Ref 𝐶 ) ↔ ( 𝑧 ∈ 𝒫 𝐽 ∧ ( 𝜑 ∧ 𝑧 Ref 𝐶 ) ) ) |
12 |
10 11
|
sylib |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) ∧ 𝑧 Ref 𝐶 ) → ( 𝑧 ∈ 𝒫 𝐽 ∧ ( 𝜑 ∧ 𝑧 Ref 𝐶 ) ) ) |
13 |
12
|
reximi2 |
⊢ ( ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) 𝑧 Ref 𝐶 → ∃ 𝑧 ∈ 𝒫 𝐽 ( 𝜑 ∧ 𝑧 Ref 𝐶 ) ) |
14 |
6 13
|
syl |
⊢ ( ( 𝐽 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶 ) → ∃ 𝑧 ∈ 𝒫 𝐽 ( 𝜑 ∧ 𝑧 Ref 𝐶 ) ) |