Metamath Proof Explorer


Theorem crefdf

Description: A formulation of crefi easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Hypotheses crefi.x 𝑋 = 𝐽
crefdf.b 𝐵 = CovHasRef 𝐴
crefdf.p ( 𝑧𝐴𝜑 )
Assertion crefdf ( ( 𝐽𝐵𝐶𝐽𝑋 = 𝐶 ) → ∃ 𝑧 ∈ 𝒫 𝐽 ( 𝜑𝑧 Ref 𝐶 ) )

Proof

Step Hyp Ref Expression
1 crefi.x 𝑋 = 𝐽
2 crefdf.b 𝐵 = CovHasRef 𝐴
3 crefdf.p ( 𝑧𝐴𝜑 )
4 2 eleq2i ( 𝐽𝐵𝐽 ∈ CovHasRef 𝐴 )
5 1 crefi ( ( 𝐽 ∈ CovHasRef 𝐴𝐶𝐽𝑋 = 𝐶 ) → ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝐶 )
6 4 5 syl3an1b ( ( 𝐽𝐵𝐶𝐽𝑋 = 𝐶 ) → ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝐶 )
7 elin ( 𝑧 ∈ ( 𝒫 𝐽𝐴 ) ↔ ( 𝑧 ∈ 𝒫 𝐽𝑧𝐴 ) )
8 3 anim2i ( ( 𝑧 ∈ 𝒫 𝐽𝑧𝐴 ) → ( 𝑧 ∈ 𝒫 𝐽𝜑 ) )
9 7 8 sylbi ( 𝑧 ∈ ( 𝒫 𝐽𝐴 ) → ( 𝑧 ∈ 𝒫 𝐽𝜑 ) )
10 9 anim1i ( ( 𝑧 ∈ ( 𝒫 𝐽𝐴 ) ∧ 𝑧 Ref 𝐶 ) → ( ( 𝑧 ∈ 𝒫 𝐽𝜑 ) ∧ 𝑧 Ref 𝐶 ) )
11 anass ( ( ( 𝑧 ∈ 𝒫 𝐽𝜑 ) ∧ 𝑧 Ref 𝐶 ) ↔ ( 𝑧 ∈ 𝒫 𝐽 ∧ ( 𝜑𝑧 Ref 𝐶 ) ) )
12 10 11 sylib ( ( 𝑧 ∈ ( 𝒫 𝐽𝐴 ) ∧ 𝑧 Ref 𝐶 ) → ( 𝑧 ∈ 𝒫 𝐽 ∧ ( 𝜑𝑧 Ref 𝐶 ) ) )
13 12 reximi2 ( ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝐶 → ∃ 𝑧 ∈ 𝒫 𝐽 ( 𝜑𝑧 Ref 𝐶 ) )
14 6 13 syl ( ( 𝐽𝐵𝐶𝐽𝑋 = 𝐶 ) → ∃ 𝑧 ∈ 𝒫 𝐽 ( 𝜑𝑧 Ref 𝐶 ) )