| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sslin |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝒫 𝑗 ∩ 𝐴 ) ⊆ ( 𝒫 𝑗 ∩ 𝐵 ) ) |
| 2 |
|
ssrexv |
⊢ ( ( 𝒫 𝑗 ∩ 𝐴 ) ⊆ ( 𝒫 𝑗 ∩ 𝐵 ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐵 ) 𝑧 Ref 𝑦 ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐵 ) 𝑧 Ref 𝑦 ) ) |
| 4 |
3
|
imim2d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) → ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐵 ) 𝑧 Ref 𝑦 ) ) ) |
| 5 |
4
|
ralimdv |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) → ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐵 ) 𝑧 Ref 𝑦 ) ) ) |
| 6 |
5
|
anim2d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑗 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) ) → ( 𝑗 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐵 ) 𝑧 Ref 𝑦 ) ) ) ) |
| 7 |
|
eqid |
⊢ ∪ 𝑗 = ∪ 𝑗 |
| 8 |
7
|
iscref |
⊢ ( 𝑗 ∈ CovHasRef 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) ) ) |
| 9 |
7
|
iscref |
⊢ ( 𝑗 ∈ CovHasRef 𝐵 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐵 ) 𝑧 Ref 𝑦 ) ) ) |
| 10 |
6 8 9
|
3imtr4g |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑗 ∈ CovHasRef 𝐴 → 𝑗 ∈ CovHasRef 𝐵 ) ) |
| 11 |
10
|
ssrdv |
⊢ ( 𝐴 ⊆ 𝐵 → CovHasRef 𝐴 ⊆ CovHasRef 𝐵 ) |