Metamath Proof Explorer


Theorem crefss

Description: The "every open cover has an A refinement" predicate respects inclusion. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion crefss ( 𝐴𝐵 → CovHasRef 𝐴 ⊆ CovHasRef 𝐵 )

Proof

Step Hyp Ref Expression
1 sslin ( 𝐴𝐵 → ( 𝒫 𝑗𝐴 ) ⊆ ( 𝒫 𝑗𝐵 ) )
2 ssrexv ( ( 𝒫 𝑗𝐴 ) ⊆ ( 𝒫 𝑗𝐵 ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐵 ) 𝑧 Ref 𝑦 ) )
3 1 2 syl ( 𝐴𝐵 → ( ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐵 ) 𝑧 Ref 𝑦 ) )
4 3 imim2d ( 𝐴𝐵 → ( ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 ) → ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐵 ) 𝑧 Ref 𝑦 ) ) )
5 4 ralimdv ( 𝐴𝐵 → ( ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 ) → ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐵 ) 𝑧 Ref 𝑦 ) ) )
6 5 anim2d ( 𝐴𝐵 → ( ( 𝑗 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 ) ) → ( 𝑗 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐵 ) 𝑧 Ref 𝑦 ) ) ) )
7 eqid 𝑗 = 𝑗
8 7 iscref ( 𝑗 ∈ CovHasRef 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 ) ) )
9 7 iscref ( 𝑗 ∈ CovHasRef 𝐵 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐵 ) 𝑧 Ref 𝑦 ) ) )
10 6 8 9 3imtr4g ( 𝐴𝐵 → ( 𝑗 ∈ CovHasRef 𝐴𝑗 ∈ CovHasRef 𝐵 ) )
11 10 ssrdv ( 𝐴𝐵 → CovHasRef 𝐴 ⊆ CovHasRef 𝐵 )