Metamath Proof Explorer


Theorem crefss

Description: The "every open cover has an A refinement" predicate respects inclusion. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion crefss A B CovHasRef A CovHasRef B

Proof

Step Hyp Ref Expression
1 sslin A B 𝒫 j A 𝒫 j B
2 ssrexv 𝒫 j A 𝒫 j B z 𝒫 j A z Ref y z 𝒫 j B z Ref y
3 1 2 syl A B z 𝒫 j A z Ref y z 𝒫 j B z Ref y
4 3 imim2d A B j = y z 𝒫 j A z Ref y j = y z 𝒫 j B z Ref y
5 4 ralimdv A B y 𝒫 j j = y z 𝒫 j A z Ref y y 𝒫 j j = y z 𝒫 j B z Ref y
6 5 anim2d A B j Top y 𝒫 j j = y z 𝒫 j A z Ref y j Top y 𝒫 j j = y z 𝒫 j B z Ref y
7 eqid j = j
8 7 iscref j CovHasRef A j Top y 𝒫 j j = y z 𝒫 j A z Ref y
9 7 iscref j CovHasRef B j Top y 𝒫 j j = y z 𝒫 j B z Ref y
10 6 8 9 3imtr4g A B j CovHasRef A j CovHasRef B
11 10 ssrdv A B CovHasRef A CovHasRef B