| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
|
| 2 |
|
elin |
|
| 3 |
1 2
|
sylib |
|
| 4 |
3
|
simpld |
|
| 5 |
|
elpwi |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
elpwi |
|
| 8 |
7
|
ad4antlr |
|
| 9 |
6 8
|
sstrd |
|
| 10 |
|
velpw |
|
| 11 |
9 10
|
sylibr |
|
| 12 |
3
|
simprd |
|
| 13 |
11 12
|
elind |
|
| 14 |
|
simpr |
|
| 15 |
|
simpllr |
|
| 16 |
14 15
|
eqtr3d |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
17 18
|
ssref |
|
| 20 |
11 6 16 19
|
syl3anc |
|
| 21 |
|
breq1 |
|
| 22 |
21
|
rspcev |
|
| 23 |
13 20 22
|
syl2anc |
|
| 24 |
23
|
r19.29an |
|
| 25 |
|
simplr |
|
| 26 |
|
vex |
|
| 27 |
|
eqid |
|
| 28 |
27 18
|
isref |
|
| 29 |
26 28
|
ax-mp |
|
| 30 |
29
|
simprbi |
|
| 31 |
30
|
adantl |
|
| 32 |
|
sseq2 |
|
| 33 |
32
|
ac6sg |
|
| 34 |
25 31 33
|
sylc |
|
| 35 |
|
simplr |
|
| 36 |
35
|
frnd |
|
| 37 |
|
vex |
|
| 38 |
37
|
rnex |
|
| 39 |
38
|
elpw |
|
| 40 |
36 39
|
sylibr |
|
| 41 |
35
|
ffnd |
|
| 42 |
|
elin |
|
| 43 |
42
|
simprbi |
|
| 44 |
43
|
ad4antlr |
|
| 45 |
|
fnfi |
|
| 46 |
41 44 45
|
syl2anc |
|
| 47 |
|
rnfi |
|
| 48 |
46 47
|
syl |
|
| 49 |
40 48
|
elind |
|
| 50 |
|
simp-5r |
|
| 51 |
27 18
|
refbas |
|
| 52 |
51
|
ad3antlr |
|
| 53 |
|
nfv |
|
| 54 |
|
nfra1 |
|
| 55 |
53 54
|
nfan |
|
| 56 |
|
rspa |
|
| 57 |
56
|
adantll |
|
| 58 |
57
|
sseld |
|
| 59 |
58
|
ex |
|
| 60 |
55 59
|
reximdai |
|
| 61 |
|
eluni2 |
|
| 62 |
61
|
a1i |
|
| 63 |
|
fnunirn |
|
| 64 |
41 63
|
syl |
|
| 65 |
60 62 64
|
3imtr4d |
|
| 66 |
65
|
ssrdv |
|
| 67 |
52 66
|
eqsstrd |
|
| 68 |
36
|
unissd |
|
| 69 |
67 68
|
eqssd |
|
| 70 |
50 69
|
eqtrd |
|
| 71 |
|
unieq |
|
| 72 |
71
|
rspceeqv |
|
| 73 |
49 70 72
|
syl2anc |
|
| 74 |
73
|
expl |
|
| 75 |
74
|
exlimdv |
|
| 76 |
34 75
|
mpd |
|
| 77 |
76
|
r19.29an |
|
| 78 |
24 77
|
impbida |
|
| 79 |
78
|
pm5.74da |
|
| 80 |
79
|
ralbidva |
|
| 81 |
80
|
pm5.32i |
|
| 82 |
|
eqid |
|
| 83 |
82
|
iscmp |
|
| 84 |
82
|
iscref |
|
| 85 |
81 83 84
|
3bitr4i |
|
| 86 |
85
|
eqriv |
|