Metamath Proof Explorer


Theorem cmpcref

Description: Equivalent definition of compact space in terms of open cover refinements. Compact spaces are topologies with finite open cover refinements. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion cmpcref Comp=CovHasRefFin

Proof

Step Hyp Ref Expression
1 simplr jTopy𝒫jj=yx𝒫yFinj=xx𝒫yFin
2 elin x𝒫yFinx𝒫yxFin
3 1 2 sylib jTopy𝒫jj=yx𝒫yFinj=xx𝒫yxFin
4 3 simpld jTopy𝒫jj=yx𝒫yFinj=xx𝒫y
5 elpwi x𝒫yxy
6 4 5 syl jTopy𝒫jj=yx𝒫yFinj=xxy
7 elpwi y𝒫jyj
8 7 ad4antlr jTopy𝒫jj=yx𝒫yFinj=xyj
9 6 8 sstrd jTopy𝒫jj=yx𝒫yFinj=xxj
10 velpw x𝒫jxj
11 9 10 sylibr jTopy𝒫jj=yx𝒫yFinj=xx𝒫j
12 3 simprd jTopy𝒫jj=yx𝒫yFinj=xxFin
13 11 12 elind jTopy𝒫jj=yx𝒫yFinj=xx𝒫jFin
14 simpr jTopy𝒫jj=yx𝒫yFinj=xj=x
15 simpllr jTopy𝒫jj=yx𝒫yFinj=xj=y
16 14 15 eqtr3d jTopy𝒫jj=yx𝒫yFinj=xx=y
17 eqid x=x
18 eqid y=y
19 17 18 ssref x𝒫jxyx=yxRefy
20 11 6 16 19 syl3anc jTopy𝒫jj=yx𝒫yFinj=xxRefy
21 breq1 z=xzRefyxRefy
22 21 rspcev x𝒫jFinxRefyz𝒫jFinzRefy
23 13 20 22 syl2anc jTopy𝒫jj=yx𝒫yFinj=xz𝒫jFinzRefy
24 23 r19.29an jTopy𝒫jj=yx𝒫yFinj=xz𝒫jFinzRefy
25 simplr jTopy𝒫jj=yz𝒫jFinzRefyz𝒫jFin
26 vex zV
27 eqid z=z
28 27 18 isref zVzRefyy=zuzvyuv
29 26 28 ax-mp zRefyy=zuzvyuv
30 29 simprbi zRefyuzvyuv
31 30 adantl jTopy𝒫jj=yz𝒫jFinzRefyuzvyuv
32 sseq2 v=fuuvufu
33 32 ac6sg z𝒫jFinuzvyuvff:zyuzufu
34 25 31 33 sylc jTopy𝒫jj=yz𝒫jFinzRefyff:zyuzufu
35 simplr jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuf:zy
36 35 frnd jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuranfy
37 vex fV
38 37 rnex ranfV
39 38 elpw ranf𝒫yranfy
40 36 39 sylibr jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuranf𝒫y
41 35 ffnd jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufufFnz
42 elin z𝒫jFinz𝒫jzFin
43 42 simprbi z𝒫jFinzFin
44 43 ad4antlr jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuzFin
45 fnfi fFnzzFinfFin
46 41 44 45 syl2anc jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufufFin
47 rnfi fFinranfFin
48 46 47 syl jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuranfFin
49 40 48 elind jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuranf𝒫yFin
50 simp-5r jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuj=y
51 27 18 refbas zRefyy=z
52 51 ad3antlr jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuy=z
53 nfv ujTopy𝒫jj=yz𝒫jFinzRefyf:zy
54 nfra1 uuzufu
55 53 54 nfan ujTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufu
56 rspa uzufuuzufu
57 56 adantll jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuuzufu
58 57 sseld jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuuzxuxfu
59 58 ex jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuuzxuxfu
60 55 59 reximdai jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuuzxuuzxfu
61 eluni2 xzuzxu
62 61 a1i jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuxzuzxu
63 fnunirn fFnzxranfuzxfu
64 41 63 syl jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuxranfuzxfu
65 60 62 64 3imtr4d jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuxzxranf
66 65 ssrdv jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuzranf
67 52 66 eqsstrd jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuyranf
68 36 unissd jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuranfy
69 67 68 eqssd jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuy=ranf
70 50 69 eqtrd jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufuj=ranf
71 unieq x=ranfx=ranf
72 71 rspceeqv ranf𝒫yFinj=ranfx𝒫yFinj=x
73 49 70 72 syl2anc jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufux𝒫yFinj=x
74 73 expl jTopy𝒫jj=yz𝒫jFinzRefyf:zyuzufux𝒫yFinj=x
75 74 exlimdv jTopy𝒫jj=yz𝒫jFinzRefyff:zyuzufux𝒫yFinj=x
76 34 75 mpd jTopy𝒫jj=yz𝒫jFinzRefyx𝒫yFinj=x
77 76 r19.29an jTopy𝒫jj=yz𝒫jFinzRefyx𝒫yFinj=x
78 24 77 impbida jTopy𝒫jj=yx𝒫yFinj=xz𝒫jFinzRefy
79 78 pm5.74da jTopy𝒫jj=yx𝒫yFinj=xj=yz𝒫jFinzRefy
80 79 ralbidva jTopy𝒫jj=yx𝒫yFinj=xy𝒫jj=yz𝒫jFinzRefy
81 80 pm5.32i jTopy𝒫jj=yx𝒫yFinj=xjTopy𝒫jj=yz𝒫jFinzRefy
82 eqid j=j
83 82 iscmp jCompjTopy𝒫jj=yx𝒫yFinj=x
84 82 iscref jCovHasRefFinjTopy𝒫jj=yz𝒫jFinzRefy
85 81 83 84 3bitr4i jCompjCovHasRefFin
86 85 eqriv Comp=CovHasRefFin