| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) |
| 2 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ↔ ( 𝑥 ∈ 𝒫 𝑦 ∧ 𝑥 ∈ Fin ) ) |
| 3 |
1 2
|
sylib |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → ( 𝑥 ∈ 𝒫 𝑦 ∧ 𝑥 ∈ Fin ) ) |
| 4 |
3
|
simpld |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → 𝑥 ∈ 𝒫 𝑦 ) |
| 5 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑦 → 𝑥 ⊆ 𝑦 ) |
| 6 |
4 5
|
syl |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → 𝑥 ⊆ 𝑦 ) |
| 7 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑗 → 𝑦 ⊆ 𝑗 ) |
| 8 |
7
|
ad4antlr |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → 𝑦 ⊆ 𝑗 ) |
| 9 |
6 8
|
sstrd |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → 𝑥 ⊆ 𝑗 ) |
| 10 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝑗 ↔ 𝑥 ⊆ 𝑗 ) |
| 11 |
9 10
|
sylibr |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → 𝑥 ∈ 𝒫 𝑗 ) |
| 12 |
3
|
simprd |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → 𝑥 ∈ Fin ) |
| 13 |
11 12
|
elind |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → 𝑥 ∈ ( 𝒫 𝑗 ∩ Fin ) ) |
| 14 |
|
simpr |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → ∪ 𝑗 = ∪ 𝑥 ) |
| 15 |
|
simpllr |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → ∪ 𝑗 = ∪ 𝑦 ) |
| 16 |
14 15
|
eqtr3d |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → ∪ 𝑥 = ∪ 𝑦 ) |
| 17 |
|
eqid |
⊢ ∪ 𝑥 = ∪ 𝑥 |
| 18 |
|
eqid |
⊢ ∪ 𝑦 = ∪ 𝑦 |
| 19 |
17 18
|
ssref |
⊢ ( ( 𝑥 ∈ 𝒫 𝑗 ∧ 𝑥 ⊆ 𝑦 ∧ ∪ 𝑥 = ∪ 𝑦 ) → 𝑥 Ref 𝑦 ) |
| 20 |
11 6 16 19
|
syl3anc |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → 𝑥 Ref 𝑦 ) |
| 21 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 Ref 𝑦 ↔ 𝑥 Ref 𝑦 ) ) |
| 22 |
21
|
rspcev |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑗 ∩ Fin ) ∧ 𝑥 Ref 𝑦 ) → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) 𝑧 Ref 𝑦 ) |
| 23 |
13 20 22
|
syl2anc |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ) ∧ ∪ 𝑗 = ∪ 𝑥 ) → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) 𝑧 Ref 𝑦 ) |
| 24 |
23
|
r19.29an |
⊢ ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ ∃ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑗 = ∪ 𝑥 ) → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) 𝑧 Ref 𝑦 ) |
| 25 |
|
simplr |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) → 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) |
| 26 |
|
vex |
⊢ 𝑧 ∈ V |
| 27 |
|
eqid |
⊢ ∪ 𝑧 = ∪ 𝑧 |
| 28 |
27 18
|
isref |
⊢ ( 𝑧 ∈ V → ( 𝑧 Ref 𝑦 ↔ ( ∪ 𝑦 = ∪ 𝑧 ∧ ∀ 𝑢 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 𝑢 ⊆ 𝑣 ) ) ) |
| 29 |
26 28
|
ax-mp |
⊢ ( 𝑧 Ref 𝑦 ↔ ( ∪ 𝑦 = ∪ 𝑧 ∧ ∀ 𝑢 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 𝑢 ⊆ 𝑣 ) ) |
| 30 |
29
|
simprbi |
⊢ ( 𝑧 Ref 𝑦 → ∀ 𝑢 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 𝑢 ⊆ 𝑣 ) |
| 31 |
30
|
adantl |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) → ∀ 𝑢 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 𝑢 ⊆ 𝑣 ) |
| 32 |
|
sseq2 |
⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( 𝑢 ⊆ 𝑣 ↔ 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) ) |
| 33 |
32
|
ac6sg |
⊢ ( 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) → ( ∀ 𝑢 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 𝑢 ⊆ 𝑣 → ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) ) ) |
| 34 |
25 31 33
|
sylc |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) → ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) ) |
| 35 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → 𝑓 : 𝑧 ⟶ 𝑦 ) |
| 36 |
35
|
frnd |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ran 𝑓 ⊆ 𝑦 ) |
| 37 |
|
vex |
⊢ 𝑓 ∈ V |
| 38 |
37
|
rnex |
⊢ ran 𝑓 ∈ V |
| 39 |
38
|
elpw |
⊢ ( ran 𝑓 ∈ 𝒫 𝑦 ↔ ran 𝑓 ⊆ 𝑦 ) |
| 40 |
36 39
|
sylibr |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ran 𝑓 ∈ 𝒫 𝑦 ) |
| 41 |
35
|
ffnd |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → 𝑓 Fn 𝑧 ) |
| 42 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ↔ ( 𝑧 ∈ 𝒫 𝑗 ∧ 𝑧 ∈ Fin ) ) |
| 43 |
42
|
simprbi |
⊢ ( 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) → 𝑧 ∈ Fin ) |
| 44 |
43
|
ad4antlr |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → 𝑧 ∈ Fin ) |
| 45 |
|
fnfi |
⊢ ( ( 𝑓 Fn 𝑧 ∧ 𝑧 ∈ Fin ) → 𝑓 ∈ Fin ) |
| 46 |
41 44 45
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → 𝑓 ∈ Fin ) |
| 47 |
|
rnfi |
⊢ ( 𝑓 ∈ Fin → ran 𝑓 ∈ Fin ) |
| 48 |
46 47
|
syl |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ran 𝑓 ∈ Fin ) |
| 49 |
40 48
|
elind |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ran 𝑓 ∈ ( 𝒫 𝑦 ∩ Fin ) ) |
| 50 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ∪ 𝑗 = ∪ 𝑦 ) |
| 51 |
27 18
|
refbas |
⊢ ( 𝑧 Ref 𝑦 → ∪ 𝑦 = ∪ 𝑧 ) |
| 52 |
51
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ∪ 𝑦 = ∪ 𝑧 ) |
| 53 |
|
nfv |
⊢ Ⅎ 𝑢 ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) |
| 54 |
|
nfra1 |
⊢ Ⅎ 𝑢 ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) |
| 55 |
53 54
|
nfan |
⊢ Ⅎ 𝑢 ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) |
| 56 |
|
rspa |
⊢ ( ( ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ∧ 𝑢 ∈ 𝑧 ) → 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) |
| 57 |
56
|
adantll |
⊢ ( ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) ∧ 𝑢 ∈ 𝑧 ) → 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) |
| 58 |
57
|
sseld |
⊢ ( ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) ∧ 𝑢 ∈ 𝑧 ) → ( 𝑥 ∈ 𝑢 → 𝑥 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
| 59 |
58
|
ex |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ( 𝑢 ∈ 𝑧 → ( 𝑥 ∈ 𝑢 → 𝑥 ∈ ( 𝑓 ‘ 𝑢 ) ) ) ) |
| 60 |
55 59
|
reximdai |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ( ∃ 𝑢 ∈ 𝑧 𝑥 ∈ 𝑢 → ∃ 𝑢 ∈ 𝑧 𝑥 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
| 61 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝑧 ↔ ∃ 𝑢 ∈ 𝑧 𝑥 ∈ 𝑢 ) |
| 62 |
61
|
a1i |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ( 𝑥 ∈ ∪ 𝑧 ↔ ∃ 𝑢 ∈ 𝑧 𝑥 ∈ 𝑢 ) ) |
| 63 |
|
fnunirn |
⊢ ( 𝑓 Fn 𝑧 → ( 𝑥 ∈ ∪ ran 𝑓 ↔ ∃ 𝑢 ∈ 𝑧 𝑥 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
| 64 |
41 63
|
syl |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ( 𝑥 ∈ ∪ ran 𝑓 ↔ ∃ 𝑢 ∈ 𝑧 𝑥 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
| 65 |
60 62 64
|
3imtr4d |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ( 𝑥 ∈ ∪ 𝑧 → 𝑥 ∈ ∪ ran 𝑓 ) ) |
| 66 |
65
|
ssrdv |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ∪ 𝑧 ⊆ ∪ ran 𝑓 ) |
| 67 |
52 66
|
eqsstrd |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ∪ 𝑦 ⊆ ∪ ran 𝑓 ) |
| 68 |
36
|
unissd |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ∪ ran 𝑓 ⊆ ∪ 𝑦 ) |
| 69 |
67 68
|
eqssd |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ∪ 𝑦 = ∪ ran 𝑓 ) |
| 70 |
50 69
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ∪ 𝑗 = ∪ ran 𝑓 ) |
| 71 |
|
unieq |
⊢ ( 𝑥 = ran 𝑓 → ∪ 𝑥 = ∪ ran 𝑓 ) |
| 72 |
71
|
rspceeqv |
⊢ ( ( ran 𝑓 ∈ ( 𝒫 𝑦 ∩ Fin ) ∧ ∪ 𝑗 = ∪ ran 𝑓 ) → ∃ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑗 = ∪ 𝑥 ) |
| 73 |
49 70 72
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) ∧ 𝑓 : 𝑧 ⟶ 𝑦 ) ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑗 = ∪ 𝑥 ) |
| 74 |
73
|
expl |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) → ( ( 𝑓 : 𝑧 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑗 = ∪ 𝑥 ) ) |
| 75 |
74
|
exlimdv |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) → ( ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝑦 ∧ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑗 = ∪ 𝑥 ) ) |
| 76 |
34 75
|
mpd |
⊢ ( ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) ) ∧ 𝑧 Ref 𝑦 ) → ∃ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑗 = ∪ 𝑥 ) |
| 77 |
76
|
r19.29an |
⊢ ( ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) ∧ ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) 𝑧 Ref 𝑦 ) → ∃ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑗 = ∪ 𝑥 ) |
| 78 |
24 77
|
impbida |
⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) ∧ ∪ 𝑗 = ∪ 𝑦 ) → ( ∃ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑗 = ∪ 𝑥 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) 𝑧 Ref 𝑦 ) ) |
| 79 |
78
|
pm5.74da |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗 ) → ( ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑗 = ∪ 𝑥 ) ↔ ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) 𝑧 Ref 𝑦 ) ) ) |
| 80 |
79
|
ralbidva |
⊢ ( 𝑗 ∈ Top → ( ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑗 = ∪ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) 𝑧 Ref 𝑦 ) ) ) |
| 81 |
80
|
pm5.32i |
⊢ ( ( 𝑗 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑗 = ∪ 𝑥 ) ) ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) 𝑧 Ref 𝑦 ) ) ) |
| 82 |
|
eqid |
⊢ ∪ 𝑗 = ∪ 𝑗 |
| 83 |
82
|
iscmp |
⊢ ( 𝑗 ∈ Comp ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑥 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑗 = ∪ 𝑥 ) ) ) |
| 84 |
82
|
iscref |
⊢ ( 𝑗 ∈ CovHasRef Fin ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ Fin ) 𝑧 Ref 𝑦 ) ) ) |
| 85 |
81 83 84
|
3bitr4i |
⊢ ( 𝑗 ∈ Comp ↔ 𝑗 ∈ CovHasRef Fin ) |
| 86 |
85
|
eqriv |
⊢ Comp = CovHasRef Fin |