Step |
Hyp |
Ref |
Expression |
1 |
|
isref.1 |
⊢ 𝑋 = ∪ 𝐴 |
2 |
|
isref.2 |
⊢ 𝑌 = ∪ 𝐵 |
3 |
|
refrel |
⊢ Rel Ref |
4 |
3
|
brrelex2i |
⊢ ( 𝐴 Ref 𝐵 → 𝐵 ∈ V ) |
5 |
4
|
anim2i |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 Ref 𝐵 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) ) |
6 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ ( 𝑌 = 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) → 𝐴 ∈ 𝐶 ) |
7 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝑌 = 𝑋 ) → 𝑌 = 𝑋 ) |
8 |
7 2 1
|
3eqtr3g |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝑌 = 𝑋 ) → ∪ 𝐵 = ∪ 𝐴 ) |
9 |
|
uniexg |
⊢ ( 𝐴 ∈ 𝐶 → ∪ 𝐴 ∈ V ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝑌 = 𝑋 ) → ∪ 𝐴 ∈ V ) |
11 |
8 10
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝑌 = 𝑋 ) → ∪ 𝐵 ∈ V ) |
12 |
|
uniexb |
⊢ ( 𝐵 ∈ V ↔ ∪ 𝐵 ∈ V ) |
13 |
11 12
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝑌 = 𝑋 ) → 𝐵 ∈ V ) |
14 |
13
|
adantrr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ ( 𝑌 = 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) → 𝐵 ∈ V ) |
15 |
6 14
|
jca |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ ( 𝑌 = 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) ) |
16 |
|
unieq |
⊢ ( 𝑎 = 𝐴 → ∪ 𝑎 = ∪ 𝐴 ) |
17 |
16 1
|
eqtr4di |
⊢ ( 𝑎 = 𝐴 → ∪ 𝑎 = 𝑋 ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑎 = 𝐴 → ( ∪ 𝑏 = ∪ 𝑎 ↔ ∪ 𝑏 = 𝑋 ) ) |
19 |
|
raleq |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑥 ∈ 𝑎 ∃ 𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦 ) ) |
20 |
18 19
|
anbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ∪ 𝑏 = ∪ 𝑎 ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦 ) ↔ ( ∪ 𝑏 = 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦 ) ) ) |
21 |
|
unieq |
⊢ ( 𝑏 = 𝐵 → ∪ 𝑏 = ∪ 𝐵 ) |
22 |
21 2
|
eqtr4di |
⊢ ( 𝑏 = 𝐵 → ∪ 𝑏 = 𝑌 ) |
23 |
22
|
eqeq1d |
⊢ ( 𝑏 = 𝐵 → ( ∪ 𝑏 = 𝑋 ↔ 𝑌 = 𝑋 ) ) |
24 |
|
rexeq |
⊢ ( 𝑏 = 𝐵 → ( ∃ 𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
26 |
23 25
|
anbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( ∪ 𝑏 = 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦 ) ↔ ( 𝑌 = 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
27 |
|
df-ref |
⊢ Ref = { 〈 𝑎 , 𝑏 〉 ∣ ( ∪ 𝑏 = ∪ 𝑎 ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑦 ∈ 𝑏 𝑥 ⊆ 𝑦 ) } |
28 |
20 26 27
|
brabg |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ) → ( 𝐴 Ref 𝐵 ↔ ( 𝑌 = 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
29 |
5 15 28
|
pm5.21nd |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝐴 Ref 𝐵 ↔ ( 𝑌 = 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |