Metamath Proof Explorer


Theorem isref

Description: The property of being a refinement of a cover. Dr. Nyikos once commented in class that the term "refinement" is actually misleading and that people are inclined to confuse it with the notion defined in isfne . On the other hand, the two concepts do seem to have a dual relationship. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Hypotheses isref.1 𝑋 = 𝐴
isref.2 𝑌 = 𝐵
Assertion isref ( 𝐴𝐶 → ( 𝐴 Ref 𝐵 ↔ ( 𝑌 = 𝑋 ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 isref.1 𝑋 = 𝐴
2 isref.2 𝑌 = 𝐵
3 refrel Rel Ref
4 3 brrelex2i ( 𝐴 Ref 𝐵𝐵 ∈ V )
5 4 anim2i ( ( 𝐴𝐶𝐴 Ref 𝐵 ) → ( 𝐴𝐶𝐵 ∈ V ) )
6 simpl ( ( 𝐴𝐶 ∧ ( 𝑌 = 𝑋 ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ) → 𝐴𝐶 )
7 simpr ( ( 𝐴𝐶𝑌 = 𝑋 ) → 𝑌 = 𝑋 )
8 7 2 1 3eqtr3g ( ( 𝐴𝐶𝑌 = 𝑋 ) → 𝐵 = 𝐴 )
9 uniexg ( 𝐴𝐶 𝐴 ∈ V )
10 9 adantr ( ( 𝐴𝐶𝑌 = 𝑋 ) → 𝐴 ∈ V )
11 8 10 eqeltrd ( ( 𝐴𝐶𝑌 = 𝑋 ) → 𝐵 ∈ V )
12 uniexb ( 𝐵 ∈ V ↔ 𝐵 ∈ V )
13 11 12 sylibr ( ( 𝐴𝐶𝑌 = 𝑋 ) → 𝐵 ∈ V )
14 13 adantrr ( ( 𝐴𝐶 ∧ ( 𝑌 = 𝑋 ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ) → 𝐵 ∈ V )
15 6 14 jca ( ( 𝐴𝐶 ∧ ( 𝑌 = 𝑋 ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ) → ( 𝐴𝐶𝐵 ∈ V ) )
16 unieq ( 𝑎 = 𝐴 𝑎 = 𝐴 )
17 16 1 eqtr4di ( 𝑎 = 𝐴 𝑎 = 𝑋 )
18 17 eqeq2d ( 𝑎 = 𝐴 → ( 𝑏 = 𝑎 𝑏 = 𝑋 ) )
19 raleq ( 𝑎 = 𝐴 → ( ∀ 𝑥𝑎𝑦𝑏 𝑥𝑦 ↔ ∀ 𝑥𝐴𝑦𝑏 𝑥𝑦 ) )
20 18 19 anbi12d ( 𝑎 = 𝐴 → ( ( 𝑏 = 𝑎 ∧ ∀ 𝑥𝑎𝑦𝑏 𝑥𝑦 ) ↔ ( 𝑏 = 𝑋 ∧ ∀ 𝑥𝐴𝑦𝑏 𝑥𝑦 ) ) )
21 unieq ( 𝑏 = 𝐵 𝑏 = 𝐵 )
22 21 2 eqtr4di ( 𝑏 = 𝐵 𝑏 = 𝑌 )
23 22 eqeq1d ( 𝑏 = 𝐵 → ( 𝑏 = 𝑋𝑌 = 𝑋 ) )
24 rexeq ( 𝑏 = 𝐵 → ( ∃ 𝑦𝑏 𝑥𝑦 ↔ ∃ 𝑦𝐵 𝑥𝑦 ) )
25 24 ralbidv ( 𝑏 = 𝐵 → ( ∀ 𝑥𝐴𝑦𝑏 𝑥𝑦 ↔ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) )
26 23 25 anbi12d ( 𝑏 = 𝐵 → ( ( 𝑏 = 𝑋 ∧ ∀ 𝑥𝐴𝑦𝑏 𝑥𝑦 ) ↔ ( 𝑌 = 𝑋 ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ) )
27 df-ref Ref = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑏 = 𝑎 ∧ ∀ 𝑥𝑎𝑦𝑏 𝑥𝑦 ) }
28 20 26 27 brabg ( ( 𝐴𝐶𝐵 ∈ V ) → ( 𝐴 Ref 𝐵 ↔ ( 𝑌 = 𝑋 ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ) )
29 5 15 28 pm5.21nd ( 𝐴𝐶 → ( 𝐴 Ref 𝐵 ↔ ( 𝑌 = 𝑋 ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ) )