Metamath Proof Explorer


Theorem isfne

Description: The predicate " B is finer than A ". This property is, in a sense, the opposite of refinement, as refinement requires every element to be a subset of an element of the original and fineness requires that every element of the original have a subset in the finer cover containing every point. I do not know of a literature reference for this. (Contributed by Jeff Hankins, 28-Sep-2009)

Ref Expression
Hypotheses isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion isfne ( 𝐵𝐶 → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 isfne.1 𝑋 = 𝐴
2 isfne.2 𝑌 = 𝐵
3 fnerel Rel Fne
4 3 brrelex1i ( 𝐴 Fne 𝐵𝐴 ∈ V )
5 4 anim1i ( ( 𝐴 Fne 𝐵𝐵𝐶 ) → ( 𝐴 ∈ V ∧ 𝐵𝐶 ) )
6 5 ancoms ( ( 𝐵𝐶𝐴 Fne 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵𝐶 ) )
7 simpr ( ( 𝐵𝐶𝑋 = 𝑌 ) → 𝑋 = 𝑌 )
8 7 1 2 3eqtr3g ( ( 𝐵𝐶𝑋 = 𝑌 ) → 𝐴 = 𝐵 )
9 simpr ( ( 𝐵𝐶 𝐴 = 𝐵 ) → 𝐴 = 𝐵 )
10 uniexg ( 𝐵𝐶 𝐵 ∈ V )
11 10 adantr ( ( 𝐵𝐶 𝐴 = 𝐵 ) → 𝐵 ∈ V )
12 9 11 eqeltrd ( ( 𝐵𝐶 𝐴 = 𝐵 ) → 𝐴 ∈ V )
13 uniexb ( 𝐴 ∈ V ↔ 𝐴 ∈ V )
14 12 13 sylibr ( ( 𝐵𝐶 𝐴 = 𝐵 ) → 𝐴 ∈ V )
15 simpl ( ( 𝐵𝐶 𝐴 = 𝐵 ) → 𝐵𝐶 )
16 14 15 jca ( ( 𝐵𝐶 𝐴 = 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵𝐶 ) )
17 8 16 syldan ( ( 𝐵𝐶𝑋 = 𝑌 ) → ( 𝐴 ∈ V ∧ 𝐵𝐶 ) )
18 17 adantrr ( ( 𝐵𝐶 ∧ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) ) ) → ( 𝐴 ∈ V ∧ 𝐵𝐶 ) )
19 unieq ( 𝑟 = 𝐴 𝑟 = 𝐴 )
20 19 1 eqtr4di ( 𝑟 = 𝐴 𝑟 = 𝑋 )
21 20 eqeq1d ( 𝑟 = 𝐴 → ( 𝑟 = 𝑠𝑋 = 𝑠 ) )
22 raleq ( 𝑟 = 𝐴 → ( ∀ 𝑥𝑟 𝑥 ( 𝑠 ∩ 𝒫 𝑥 ) ↔ ∀ 𝑥𝐴 𝑥 ( 𝑠 ∩ 𝒫 𝑥 ) ) )
23 21 22 anbi12d ( 𝑟 = 𝐴 → ( ( 𝑟 = 𝑠 ∧ ∀ 𝑥𝑟 𝑥 ( 𝑠 ∩ 𝒫 𝑥 ) ) ↔ ( 𝑋 = 𝑠 ∧ ∀ 𝑥𝐴 𝑥 ( 𝑠 ∩ 𝒫 𝑥 ) ) ) )
24 unieq ( 𝑠 = 𝐵 𝑠 = 𝐵 )
25 24 2 eqtr4di ( 𝑠 = 𝐵 𝑠 = 𝑌 )
26 25 eqeq2d ( 𝑠 = 𝐵 → ( 𝑋 = 𝑠𝑋 = 𝑌 ) )
27 ineq1 ( 𝑠 = 𝐵 → ( 𝑠 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑥 ) )
28 27 unieqd ( 𝑠 = 𝐵 ( 𝑠 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑥 ) )
29 28 sseq2d ( 𝑠 = 𝐵 → ( 𝑥 ( 𝑠 ∩ 𝒫 𝑥 ) ↔ 𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) ) )
30 29 ralbidv ( 𝑠 = 𝐵 → ( ∀ 𝑥𝐴 𝑥 ( 𝑠 ∩ 𝒫 𝑥 ) ↔ ∀ 𝑥𝐴 𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) ) )
31 26 30 anbi12d ( 𝑠 = 𝐵 → ( ( 𝑋 = 𝑠 ∧ ∀ 𝑥𝐴 𝑥 ( 𝑠 ∩ 𝒫 𝑥 ) ) ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) ) ) )
32 df-fne Fne = { ⟨ 𝑟 , 𝑠 ⟩ ∣ ( 𝑟 = 𝑠 ∧ ∀ 𝑥𝑟 𝑥 ( 𝑠 ∩ 𝒫 𝑥 ) ) }
33 23 31 32 brabg ( ( 𝐴 ∈ V ∧ 𝐵𝐶 ) → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) ) ) )
34 6 18 33 pm5.21nd ( 𝐵𝐶 → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) ) ) )