Step |
Hyp |
Ref |
Expression |
1 |
|
isfne.1 |
⊢ 𝑋 = ∪ 𝐴 |
2 |
|
isfne.2 |
⊢ 𝑌 = ∪ 𝐵 |
3 |
|
fnerel |
⊢ Rel Fne |
4 |
3
|
brrelex1i |
⊢ ( 𝐴 Fne 𝐵 → 𝐴 ∈ V ) |
5 |
4
|
anim1i |
⊢ ( ( 𝐴 Fne 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) ) |
6 |
5
|
ancoms |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐴 Fne 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) ) |
7 |
|
simpr |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) |
8 |
7 1 2
|
3eqtr3g |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝑋 = 𝑌 ) → ∪ 𝐴 = ∪ 𝐵 ) |
9 |
|
simpr |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∪ 𝐴 = ∪ 𝐵 ) → ∪ 𝐴 = ∪ 𝐵 ) |
10 |
|
uniexg |
⊢ ( 𝐵 ∈ 𝐶 → ∪ 𝐵 ∈ V ) |
11 |
10
|
adantr |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∪ 𝐴 = ∪ 𝐵 ) → ∪ 𝐵 ∈ V ) |
12 |
9 11
|
eqeltrd |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∪ 𝐴 = ∪ 𝐵 ) → ∪ 𝐴 ∈ V ) |
13 |
|
uniexb |
⊢ ( 𝐴 ∈ V ↔ ∪ 𝐴 ∈ V ) |
14 |
12 13
|
sylibr |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∪ 𝐴 = ∪ 𝐵 ) → 𝐴 ∈ V ) |
15 |
|
simpl |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∪ 𝐴 = ∪ 𝐵 ) → 𝐵 ∈ 𝐶 ) |
16 |
14 15
|
jca |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∪ 𝐴 = ∪ 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) ) |
17 |
8 16
|
syldan |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝑋 = 𝑌 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) ) |
18 |
17
|
adantrr |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) ) |
19 |
|
unieq |
⊢ ( 𝑟 = 𝐴 → ∪ 𝑟 = ∪ 𝐴 ) |
20 |
19 1
|
eqtr4di |
⊢ ( 𝑟 = 𝐴 → ∪ 𝑟 = 𝑋 ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑟 = 𝐴 → ( ∪ 𝑟 = ∪ 𝑠 ↔ 𝑋 = ∪ 𝑠 ) ) |
22 |
|
raleq |
⊢ ( 𝑟 = 𝐴 → ( ∀ 𝑥 ∈ 𝑟 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ) ) |
23 |
21 22
|
anbi12d |
⊢ ( 𝑟 = 𝐴 → ( ( ∪ 𝑟 = ∪ 𝑠 ∧ ∀ 𝑥 ∈ 𝑟 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ) ↔ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ) ) ) |
24 |
|
unieq |
⊢ ( 𝑠 = 𝐵 → ∪ 𝑠 = ∪ 𝐵 ) |
25 |
24 2
|
eqtr4di |
⊢ ( 𝑠 = 𝐵 → ∪ 𝑠 = 𝑌 ) |
26 |
25
|
eqeq2d |
⊢ ( 𝑠 = 𝐵 → ( 𝑋 = ∪ 𝑠 ↔ 𝑋 = 𝑌 ) ) |
27 |
|
ineq1 |
⊢ ( 𝑠 = 𝐵 → ( 𝑠 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑥 ) ) |
28 |
27
|
unieqd |
⊢ ( 𝑠 = 𝐵 → ∪ ( 𝑠 ∩ 𝒫 𝑥 ) = ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
29 |
28
|
sseq2d |
⊢ ( 𝑠 = 𝐵 → ( 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ↔ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
30 |
29
|
ralbidv |
⊢ ( 𝑠 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
31 |
26 30
|
anbi12d |
⊢ ( 𝑠 = 𝐵 → ( ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ) ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) ) |
32 |
|
df-fne |
⊢ Fne = { 〈 𝑟 , 𝑠 〉 ∣ ( ∪ 𝑟 = ∪ 𝑠 ∧ ∀ 𝑥 ∈ 𝑟 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ) } |
33 |
23 31 32
|
brabg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) ) |
34 |
6 18 33
|
pm5.21nd |
⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) ) |