Metamath Proof Explorer


Theorem refbas

Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Hypotheses refbas.1 𝑋 = 𝐴
refbas.2 𝑌 = 𝐵
Assertion refbas ( 𝐴 Ref 𝐵𝑌 = 𝑋 )

Proof

Step Hyp Ref Expression
1 refbas.1 𝑋 = 𝐴
2 refbas.2 𝑌 = 𝐵
3 refrel Rel Ref
4 3 brrelex1i ( 𝐴 Ref 𝐵𝐴 ∈ V )
5 1 2 isref ( 𝐴 ∈ V → ( 𝐴 Ref 𝐵 ↔ ( 𝑌 = 𝑋 ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ) )
6 5 simprbda ( ( 𝐴 ∈ V ∧ 𝐴 Ref 𝐵 ) → 𝑌 = 𝑋 )
7 4 6 mpancom ( 𝐴 Ref 𝐵𝑌 = 𝑋 )