Metamath Proof Explorer
Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)
|
|
Ref |
Expression |
|
Hypotheses |
refbas.1 |
⊢ 𝑋 = ∪ 𝐴 |
|
|
refbas.2 |
⊢ 𝑌 = ∪ 𝐵 |
|
Assertion |
refbas |
⊢ ( 𝐴 Ref 𝐵 → 𝑌 = 𝑋 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
refbas.1 |
⊢ 𝑋 = ∪ 𝐴 |
2 |
|
refbas.2 |
⊢ 𝑌 = ∪ 𝐵 |
3 |
|
refrel |
⊢ Rel Ref |
4 |
3
|
brrelex1i |
⊢ ( 𝐴 Ref 𝐵 → 𝐴 ∈ V ) |
5 |
1 2
|
isref |
⊢ ( 𝐴 ∈ V → ( 𝐴 Ref 𝐵 ↔ ( 𝑌 = 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
6 |
5
|
simprbda |
⊢ ( ( 𝐴 ∈ V ∧ 𝐴 Ref 𝐵 ) → 𝑌 = 𝑋 ) |
7 |
4 6
|
mpancom |
⊢ ( 𝐴 Ref 𝐵 → 𝑌 = 𝑋 ) |