Metamath Proof Explorer


Theorem refbas

Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Hypotheses refbas.1 X = A
refbas.2 Y = B
Assertion refbas A Ref B Y = X

Proof

Step Hyp Ref Expression
1 refbas.1 X = A
2 refbas.2 Y = B
3 refrel Rel Ref
4 3 brrelex1i A Ref B A V
5 1 2 isref A V A Ref B Y = X x A y B x y
6 5 simprbda A V A Ref B Y = X
7 4 6 mpancom A Ref B Y = X