Metamath Proof Explorer


Theorem refssex

Description: Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Assertion refssex A Ref B S A x B S x

Proof

Step Hyp Ref Expression
1 refrel Rel Ref
2 1 brrelex1i A Ref B A V
3 eqid A = A
4 eqid B = B
5 3 4 isref A V A Ref B B = A y A x B y x
6 5 simplbda A V A Ref B y A x B y x
7 2 6 mpancom A Ref B y A x B y x
8 sseq1 y = S y x S x
9 8 rexbidv y = S x B y x x B S x
10 9 rspccv y A x B y x S A x B S x
11 7 10 syl A Ref B S A x B S x
12 11 imp A Ref B S A x B S x