Step |
Hyp |
Ref |
Expression |
1 |
|
refrel |
⊢ Rel Ref |
2 |
1
|
brrelex1i |
⊢ ( 𝐴 Ref 𝐵 → 𝐴 ∈ V ) |
3 |
|
eqid |
⊢ ∪ 𝐴 = ∪ 𝐴 |
4 |
|
eqid |
⊢ ∪ 𝐵 = ∪ 𝐵 |
5 |
3 4
|
isref |
⊢ ( 𝐴 ∈ V → ( 𝐴 Ref 𝐵 ↔ ( ∪ 𝐵 = ∪ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) |
6 |
5
|
simplbda |
⊢ ( ( 𝐴 ∈ V ∧ 𝐴 Ref 𝐵 ) → ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 ) |
7 |
2 6
|
mpancom |
⊢ ( 𝐴 Ref 𝐵 → ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 ) |
8 |
|
sseq1 |
⊢ ( 𝑦 = 𝑆 → ( 𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥 ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝑦 = 𝑆 → ( ∃ 𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 ↔ ∃ 𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥 ) ) |
10 |
9
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 → ( 𝑆 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥 ) ) |
11 |
7 10
|
syl |
⊢ ( 𝐴 Ref 𝐵 → ( 𝑆 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥 ) ) |
12 |
11
|
imp |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝑆 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥 ) |