Metamath Proof Explorer


Theorem refssex

Description: Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Assertion refssex ( ( 𝐴 Ref 𝐵𝑆𝐴 ) → ∃ 𝑥𝐵 𝑆𝑥 )

Proof

Step Hyp Ref Expression
1 refrel Rel Ref
2 1 brrelex1i ( 𝐴 Ref 𝐵𝐴 ∈ V )
3 eqid 𝐴 = 𝐴
4 eqid 𝐵 = 𝐵
5 3 4 isref ( 𝐴 ∈ V → ( 𝐴 Ref 𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀ 𝑦𝐴𝑥𝐵 𝑦𝑥 ) ) )
6 5 simplbda ( ( 𝐴 ∈ V ∧ 𝐴 Ref 𝐵 ) → ∀ 𝑦𝐴𝑥𝐵 𝑦𝑥 )
7 2 6 mpancom ( 𝐴 Ref 𝐵 → ∀ 𝑦𝐴𝑥𝐵 𝑦𝑥 )
8 sseq1 ( 𝑦 = 𝑆 → ( 𝑦𝑥𝑆𝑥 ) )
9 8 rexbidv ( 𝑦 = 𝑆 → ( ∃ 𝑥𝐵 𝑦𝑥 ↔ ∃ 𝑥𝐵 𝑆𝑥 ) )
10 9 rspccv ( ∀ 𝑦𝐴𝑥𝐵 𝑦𝑥 → ( 𝑆𝐴 → ∃ 𝑥𝐵 𝑆𝑥 ) )
11 7 10 syl ( 𝐴 Ref 𝐵 → ( 𝑆𝐴 → ∃ 𝑥𝐵 𝑆𝑥 ) )
12 11 imp ( ( 𝐴 Ref 𝐵𝑆𝐴 ) → ∃ 𝑥𝐵 𝑆𝑥 )