| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssref.1 | ⊢ 𝑋  =  ∪  𝐴 | 
						
							| 2 |  | ssref.2 | ⊢ 𝑌  =  ∪  𝐵 | 
						
							| 3 |  | eqcom | ⊢ ( 𝑋  =  𝑌  ↔  𝑌  =  𝑋 ) | 
						
							| 4 | 3 | biimpi | ⊢ ( 𝑋  =  𝑌  →  𝑌  =  𝑋 ) | 
						
							| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐴  ⊆  𝐵  ∧  𝑋  =  𝑌 )  →  𝑌  =  𝑋 ) | 
						
							| 6 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐵 ) | 
						
							| 7 | 6 | 3ad2antl2 | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐴  ⊆  𝐵  ∧  𝑋  =  𝑌 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐵 ) | 
						
							| 8 |  | ssid | ⊢ 𝑥  ⊆  𝑥 | 
						
							| 9 |  | sseq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑥  ⊆  𝑦  ↔  𝑥  ⊆  𝑥 ) ) | 
						
							| 10 | 9 | rspcev | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑥  ⊆  𝑥 )  →  ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 ) | 
						
							| 11 | 7 8 10 | sylancl | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐴  ⊆  𝐵  ∧  𝑋  =  𝑌 )  ∧  𝑥  ∈  𝐴 )  →  ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐴  ⊆  𝐵  ∧  𝑋  =  𝑌 )  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 ) | 
						
							| 13 | 1 2 | isref | ⊢ ( 𝐴  ∈  𝐶  →  ( 𝐴 Ref 𝐵  ↔  ( 𝑌  =  𝑋  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 ) ) ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐴  ⊆  𝐵  ∧  𝑋  =  𝑌 )  →  ( 𝐴 Ref 𝐵  ↔  ( 𝑌  =  𝑋  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  ⊆  𝑦 ) ) ) | 
						
							| 15 | 5 12 14 | mpbir2and | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐴  ⊆  𝐵  ∧  𝑋  =  𝑌 )  →  𝐴 Ref 𝐵 ) |