Step |
Hyp |
Ref |
Expression |
1 |
|
ssref.1 |
|- X = U. A |
2 |
|
ssref.2 |
|- Y = U. B |
3 |
|
eqcom |
|- ( X = Y <-> Y = X ) |
4 |
3
|
biimpi |
|- ( X = Y -> Y = X ) |
5 |
4
|
3ad2ant3 |
|- ( ( A e. C /\ A C_ B /\ X = Y ) -> Y = X ) |
6 |
|
ssel2 |
|- ( ( A C_ B /\ x e. A ) -> x e. B ) |
7 |
6
|
3ad2antl2 |
|- ( ( ( A e. C /\ A C_ B /\ X = Y ) /\ x e. A ) -> x e. B ) |
8 |
|
ssid |
|- x C_ x |
9 |
|
sseq2 |
|- ( y = x -> ( x C_ y <-> x C_ x ) ) |
10 |
9
|
rspcev |
|- ( ( x e. B /\ x C_ x ) -> E. y e. B x C_ y ) |
11 |
7 8 10
|
sylancl |
|- ( ( ( A e. C /\ A C_ B /\ X = Y ) /\ x e. A ) -> E. y e. B x C_ y ) |
12 |
11
|
ralrimiva |
|- ( ( A e. C /\ A C_ B /\ X = Y ) -> A. x e. A E. y e. B x C_ y ) |
13 |
1 2
|
isref |
|- ( A e. C -> ( A Ref B <-> ( Y = X /\ A. x e. A E. y e. B x C_ y ) ) ) |
14 |
13
|
3ad2ant1 |
|- ( ( A e. C /\ A C_ B /\ X = Y ) -> ( A Ref B <-> ( Y = X /\ A. x e. A E. y e. B x C_ y ) ) ) |
15 |
5 12 14
|
mpbir2and |
|- ( ( A e. C /\ A C_ B /\ X = Y ) -> A Ref B ) |