Description: Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refref | |- ( A e. V -> A Ref A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. A = U. A |
|
| 2 | ssid | |- x C_ x |
|
| 3 | sseq2 | |- ( y = x -> ( x C_ y <-> x C_ x ) ) |
|
| 4 | 3 | rspcev | |- ( ( x e. A /\ x C_ x ) -> E. y e. A x C_ y ) |
| 5 | 2 4 | mpan2 | |- ( x e. A -> E. y e. A x C_ y ) |
| 6 | 5 | rgen | |- A. x e. A E. y e. A x C_ y |
| 7 | 1 6 | pm3.2i | |- ( U. A = U. A /\ A. x e. A E. y e. A x C_ y ) |
| 8 | 1 1 | isref | |- ( A e. V -> ( A Ref A <-> ( U. A = U. A /\ A. x e. A E. y e. A x C_ y ) ) ) |
| 9 | 7 8 | mpbiri | |- ( A e. V -> A Ref A ) |