Metamath Proof Explorer


Theorem refref

Description: Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010)

Ref Expression
Assertion refref ( 𝐴𝑉𝐴 Ref 𝐴 )

Proof

Step Hyp Ref Expression
1 eqid 𝐴 = 𝐴
2 ssid 𝑥𝑥
3 sseq2 ( 𝑦 = 𝑥 → ( 𝑥𝑦𝑥𝑥 ) )
4 3 rspcev ( ( 𝑥𝐴𝑥𝑥 ) → ∃ 𝑦𝐴 𝑥𝑦 )
5 2 4 mpan2 ( 𝑥𝐴 → ∃ 𝑦𝐴 𝑥𝑦 )
6 5 rgen 𝑥𝐴𝑦𝐴 𝑥𝑦
7 1 6 pm3.2i ( 𝐴 = 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 )
8 1 1 isref ( 𝐴𝑉 → ( 𝐴 Ref 𝐴 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) ) )
9 7 8 mpbiri ( 𝐴𝑉𝐴 Ref 𝐴 )