Description: Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | refref | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 Ref 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ∪ 𝐴 = ∪ 𝐴 | |
2 | ssid | ⊢ 𝑥 ⊆ 𝑥 | |
3 | sseq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑥 ) ) | |
4 | 3 | rspcev | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑥 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) |
5 | 2 4 | mpan2 | ⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) |
6 | 5 | rgen | ⊢ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 |
7 | 1 6 | pm3.2i | ⊢ ( ∪ 𝐴 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) |
8 | 1 1 | isref | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 Ref 𝐴 ↔ ( ∪ 𝐴 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) ) ) |
9 | 7 8 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 Ref 𝐴 ) |