Database
BASIC TOPOLOGY
Topology
Refinements
refref
Next ⟩
reftr
Metamath Proof Explorer
Ascii
Unicode
Theorem
refref
Description:
Reflexivity of refinement.
(Contributed by
Jeff Hankins
, 18-Jan-2010)
Ref
Expression
Assertion
refref
⊢
A
∈
V
→
A
Ref
A
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
⋃
A
=
⋃
A
2
ssid
⊢
x
⊆
x
3
sseq2
⊢
y
=
x
→
x
⊆
y
↔
x
⊆
x
4
3
rspcev
⊢
x
∈
A
∧
x
⊆
x
→
∃
y
∈
A
x
⊆
y
5
2
4
mpan2
⊢
x
∈
A
→
∃
y
∈
A
x
⊆
y
6
5
rgen
⊢
∀
x
∈
A
∃
y
∈
A
x
⊆
y
7
1
6
pm3.2i
⊢
⋃
A
=
⋃
A
∧
∀
x
∈
A
∃
y
∈
A
x
⊆
y
8
1
1
isref
⊢
A
∈
V
→
A
Ref
A
↔
⋃
A
=
⋃
A
∧
∀
x
∈
A
∃
y
∈
A
x
⊆
y
9
7
8
mpbiri
⊢
A
∈
V
→
A
Ref
A