Metamath Proof Explorer


Theorem refref

Description: Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010)

Ref Expression
Assertion refref A V A Ref A

Proof

Step Hyp Ref Expression
1 eqid A = A
2 ssid x x
3 sseq2 y = x x y x x
4 3 rspcev x A x x y A x y
5 2 4 mpan2 x A y A x y
6 5 rgen x A y A x y
7 1 6 pm3.2i A = A x A y A x y
8 1 1 isref A V A Ref A A = A x A y A x y
9 7 8 mpbiri A V A Ref A