Metamath Proof Explorer


Theorem reftr

Description: Refinement is transitive. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Assertion reftr ARefBBRefCARefC

Proof

Step Hyp Ref Expression
1 eqid B=B
2 eqid C=C
3 1 2 refbas BRefCC=B
4 eqid A=A
5 4 1 refbas ARefBB=A
6 3 5 sylan9eqr ARefBBRefCC=A
7 refssex ARefBxAyBxy
8 7 ex ARefBxAyBxy
9 8 adantr ARefBBRefCxAyBxy
10 refssex BRefCyBzCyz
11 10 ad2ant2lr ARefBBRefCyBxyzCyz
12 sstr2 xyyzxz
13 12 reximdv xyzCyzzCxz
14 13 ad2antll ARefBBRefCyBxyzCyzzCxz
15 11 14 mpd ARefBBRefCyBxyzCxz
16 15 rexlimdvaa ARefBBRefCyBxyzCxz
17 9 16 syld ARefBBRefCxAzCxz
18 17 ralrimiv ARefBBRefCxAzCxz
19 refrel RelRef
20 19 brrelex1i ARefBAV
21 20 adantr ARefBBRefCAV
22 4 2 isref AVARefCC=AxAzCxz
23 21 22 syl ARefBBRefCARefCC=AxAzCxz
24 6 18 23 mpbir2and ARefBBRefCARefC