| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ∪ 𝐵 = ∪ 𝐵 |
| 2 |
|
eqid |
⊢ ∪ 𝐶 = ∪ 𝐶 |
| 3 |
1 2
|
refbas |
⊢ ( 𝐵 Ref 𝐶 → ∪ 𝐶 = ∪ 𝐵 ) |
| 4 |
|
eqid |
⊢ ∪ 𝐴 = ∪ 𝐴 |
| 5 |
4 1
|
refbas |
⊢ ( 𝐴 Ref 𝐵 → ∪ 𝐵 = ∪ 𝐴 ) |
| 6 |
3 5
|
sylan9eqr |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 Ref 𝐶 ) → ∪ 𝐶 = ∪ 𝐴 ) |
| 7 |
|
refssex |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
| 8 |
7
|
ex |
⊢ ( 𝐴 Ref 𝐵 → ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 Ref 𝐶 ) → ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
| 10 |
|
refssex |
⊢ ( ( 𝐵 Ref 𝐶 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑧 ∈ 𝐶 𝑦 ⊆ 𝑧 ) |
| 11 |
10
|
ad2ant2lr |
⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 Ref 𝐶 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ⊆ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐶 𝑦 ⊆ 𝑧 ) |
| 12 |
|
sstr2 |
⊢ ( 𝑥 ⊆ 𝑦 → ( 𝑦 ⊆ 𝑧 → 𝑥 ⊆ 𝑧 ) ) |
| 13 |
12
|
reximdv |
⊢ ( 𝑥 ⊆ 𝑦 → ( ∃ 𝑧 ∈ 𝐶 𝑦 ⊆ 𝑧 → ∃ 𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧 ) ) |
| 14 |
13
|
ad2antll |
⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 Ref 𝐶 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ⊆ 𝑦 ) ) → ( ∃ 𝑧 ∈ 𝐶 𝑦 ⊆ 𝑧 → ∃ 𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧 ) ) |
| 15 |
11 14
|
mpd |
⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 Ref 𝐶 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ⊆ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧 ) |
| 16 |
15
|
rexlimdvaa |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 Ref 𝐶 ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∃ 𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧 ) ) |
| 17 |
9 16
|
syld |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 Ref 𝐶 ) → ( 𝑥 ∈ 𝐴 → ∃ 𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧 ) ) |
| 18 |
17
|
ralrimiv |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 Ref 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧 ) |
| 19 |
|
refrel |
⊢ Rel Ref |
| 20 |
19
|
brrelex1i |
⊢ ( 𝐴 Ref 𝐵 → 𝐴 ∈ V ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 Ref 𝐶 ) → 𝐴 ∈ V ) |
| 22 |
4 2
|
isref |
⊢ ( 𝐴 ∈ V → ( 𝐴 Ref 𝐶 ↔ ( ∪ 𝐶 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧 ) ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 Ref 𝐶 ) → ( 𝐴 Ref 𝐶 ↔ ( ∪ 𝐶 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧 ) ) ) |
| 24 |
6 18 23
|
mpbir2and |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 Ref 𝐶 ) → 𝐴 Ref 𝐶 ) |