Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝐴 = ∪ 𝐴 |
2 |
|
eqid |
⊢ ∪ 𝐵 = ∪ 𝐵 |
3 |
1 2
|
refbas |
⊢ ( 𝐴 Ref 𝐵 → ∪ 𝐵 = ∪ 𝐴 ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) → ∪ 𝐵 = ∪ 𝐴 ) |
5 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { ∅ } ) ) |
6 |
|
refssex |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
7 |
6
|
adantlr |
⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
8 |
|
0ss |
⊢ ∅ ⊆ 𝑦 |
9 |
8
|
a1i |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∅ ⊆ 𝑦 ) |
10 |
9
|
reximdva0 |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑦 ∈ 𝐵 ∅ ⊆ 𝑦 ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) ∧ 𝑥 ∈ { ∅ } ) → ∃ 𝑦 ∈ 𝐵 ∅ ⊆ 𝑦 ) |
12 |
|
elsni |
⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) |
13 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ 𝑦 ↔ ∅ ⊆ 𝑦 ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝑥 = ∅ → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∅ ⊆ 𝑦 ) ) |
15 |
12 14
|
syl |
⊢ ( 𝑥 ∈ { ∅ } → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∅ ⊆ 𝑦 ) ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) ∧ 𝑥 ∈ { ∅ } ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∅ ⊆ 𝑦 ) ) |
17 |
11 16
|
mpbird |
⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) ∧ 𝑥 ∈ { ∅ } ) → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
18 |
7 17
|
jaodan |
⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { ∅ } ) ) → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
19 |
5 18
|
sylan2b |
⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) ∧ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ) → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
20 |
19
|
ralrimiva |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) → ∀ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
21 |
|
refrel |
⊢ Rel Ref |
22 |
21
|
brrelex1i |
⊢ ( 𝐴 Ref 𝐵 → 𝐴 ∈ V ) |
23 |
|
p0ex |
⊢ { ∅ } ∈ V |
24 |
|
unexg |
⊢ ( ( 𝐴 ∈ V ∧ { ∅ } ∈ V ) → ( 𝐴 ∪ { ∅ } ) ∈ V ) |
25 |
22 23 24
|
sylancl |
⊢ ( 𝐴 Ref 𝐵 → ( 𝐴 ∪ { ∅ } ) ∈ V ) |
26 |
|
uniun |
⊢ ∪ ( 𝐴 ∪ { ∅ } ) = ( ∪ 𝐴 ∪ ∪ { ∅ } ) |
27 |
|
0ex |
⊢ ∅ ∈ V |
28 |
27
|
unisn |
⊢ ∪ { ∅ } = ∅ |
29 |
28
|
uneq2i |
⊢ ( ∪ 𝐴 ∪ ∪ { ∅ } ) = ( ∪ 𝐴 ∪ ∅ ) |
30 |
|
un0 |
⊢ ( ∪ 𝐴 ∪ ∅ ) = ∪ 𝐴 |
31 |
26 29 30
|
3eqtrri |
⊢ ∪ 𝐴 = ∪ ( 𝐴 ∪ { ∅ } ) |
32 |
31 2
|
isref |
⊢ ( ( 𝐴 ∪ { ∅ } ) ∈ V → ( ( 𝐴 ∪ { ∅ } ) Ref 𝐵 ↔ ( ∪ 𝐵 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
33 |
25 32
|
syl |
⊢ ( 𝐴 Ref 𝐵 → ( ( 𝐴 ∪ { ∅ } ) Ref 𝐵 ↔ ( ∪ 𝐵 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 ∪ { ∅ } ) Ref 𝐵 ↔ ( ∪ 𝐵 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
35 |
4 20 34
|
mpbir2and |
⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ∪ { ∅ } ) Ref 𝐵 ) |